********************************************************************************************** ** ** ** SNPs&GO ** ** Predicting disease associated variation using GO terms ** ** ** ********************************************************************************************** Sequence File: SP.seq Mutation Prediction RI Probability Method R364G Neutral 5 0.240 PhD-SNP: F[R]=10% F[G]=0% Nali=401 R364G Neutral 3 0.348 PANTHER: F[R]=22% F[G]=2% R364G Neutral 8 0.124 SNPs&GO Mutation: WT+POS+NEW WT: Residue in wild-type protein POS: Residue position NEW: New residue after mutation Prediction: Neutral: Neutral variation Disease: Disease associated variation RI: Reliability Index Probability: Disease probability (if >0.5 mutation is predicted Disease) Method: SVM type and data PANTHER: Output of the PANTHER algorithm PhD-SNP: SVM input is the sequence and profile at the mutated position SNPs&GO: SVM input is all the input in PhD-SNP, PANTHER and GO term features F[X]: Frequency of residue X in the sequence profile Nali: Number of aligned sequences in the mutated site ********************************************************************************************** ** ** ** Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. (2009). Functional ** ** annotations improve the predictive score of human disease-related mutations in ** ** proteins. Human Mutation. 30:1237-1244. ** ** ** ** Capriotti E, Altman RB. (2011). Improving the prediction of disease-related vari- ** ** ants using protein three-dimensional structure. BMC Bioinformatics. 12 (Sup.4) S3. ** ** ** **********************************************************************************************