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ABSTRACT In this article we use mutation
studies as a benchmark for a minimal model of the
folding process of helical proteins. The model as-
cribes a pivotal role to the collisional dynamics of a
few crucial residues (foldons) and predicts the fold-
ing rates by exploiting information drawn from the
protein sequence. We show that our model rational-
izes the effects of point mutations on the kinetics of
folding. The folding times of two proteins and their
mutants are predicted. Stability and location of
foldons have a critical role as the determinants of
protein folding. This allows us to elucidate two main
mechanisms for the kinetic effects of mutations.
First, it turns out that the mutations eliciting the
most notable effects alter protein stability through
stabilization or destabilization of the foldons. Sec-
ondly, the folding rate is affected via a modification
of the foldon topology by those mutations that lead
to the birth or death of foldons. The few mispre-
dicted folding rates of some mutants hint at the
limits of the current version of the folding model
proposed in the present article. The performance of
our folding model declines in case the mutated
residues are subject to strong long-range forces.
That foldons are the critical targets of mutation
studies has notable implications for design strate-
gies and is of particular interest to address the issue
of the kinetic regulation of single proteins in the
general context of the overall dynamics of the inter-
actome. Proteins 2006;64:198–209.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

Dealing with the inherent complexity of protein folding
calls for suitable simplification strategies. The unexpected
simplicity of folding1 has led to minimalist models relying
on a supposedly small set of determinants of the pro-
cess.1–5 Current views maintain that the folding kinetics
of single domain two-state and three-state proteins depend
on few gross-grained descriptors of the native state or the
sequence. The primary determinant is the topology of the

native state, described by the contact order (CO)2 and
related concepts.6–11 The secondary factor is protein stabil-
ity.12,13 Within a different approach, dynamical studies
also hinted at the possibility of a substantial reduction of
the host of degrees of freedom to a limited set of critical
variables that are linked to collective nonlinear excitations
driving the slow dynamics of the protein.14–18 Alternative
simplification strategies rely on the notion that a reduced
set of fundamental residues can be identified to account for
the general thermodynamic3,19 or kinetic20 features of the
folded protein.

In the case of the folding process of helical proteins,
classical theories of helix-coil transitions21 are available to
describe the elementary events of folding. This provides
useful tools to dissect the overall process and to connect
local properties with global behavior. Taking advantage of
these features we suggested that, for helical proteins,
essential pieces of information about the kinetics of the
folding process can be drawn from a limited set of key
regions (foldons), corresponding to the initiation sites (ISs)
of folding.22 Foldons are immersed in stretches of the
sequence that exhibit native helical structures. On this
basis we can build up an effective reduced description of
the folding dynamics that is valid in the full nonequilib-
rium domain.23 Foldons are minimally frustrated seg-
ments of the sequence where the global interactions and
the local propensities for secondary structure minimally
conflict.23 Foldons are crucial for the whole process to the
extent that folding can be boiled down to the dynamics of
the sole helices containing a foldon (IS helices for brevity).
A suitable framework to represent the dynamics of foldons
is the foldon diffusion-collision model (henceforth FDC
model) that allows reconstruction of the folding dynamics
of helical proteins in terms of the collisional dynamics of
the IS helices.23
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The FDC model provides a minimal but realistic model
of protein folding in that it introduces a major simplifica-
tion with respect to the current applications of the bare
diffusion-collision model (DC model) (for review see Ref.
24). As a matter of fact, the FDC model maintains that the
minimal set of dynamical determinants of protein folding
corresponds to the set of the IS helices. The helices hosting
no foldons and the nonhelical regions, enter the model as
generic stretches that merely connect the foldons. This
entails a clear reduction of the number of variables to be
handled. The folding of such generic regions involves
non-rate-limiting stages of the overall folding process.

The FDC model is in principle sensitive to the details of
the residue sequence to the extent that it relies on pieces of
thermodynamic and topological information deduced di-
rectly from the primary structure of the protein at hand.
The crucial features include the location of the foldons
within the protein sequence as well as estimates of the
stability of the IS helices. The sensitivity of the model was
confirmed in previous works23,25 where we tested the FDC
model on a set of nonhomologous two-state and three-state
proteins, exploring folding rates spanning the microsecond
to the millisecond range. Here we check the sensitivity of
the FDC model to small changes in the sequence. More
specifically, we show that the FDC model provides an
effective sequence-specific tool that reproduces with satis-
factory accuracy the variations of the folding rate ensuing
from point mutations. We apply the FDC model to esti-
mate the folding times of the mutants of two well-

characterized two-state folders, the all-� proteins �-repres-
sor [Protein Data Bank (PDB) file, 1LMB4] and ACBP
(PDB file, 2ABD). The folding rates of the wild types and
mutants (displayed in Tables I and II) are computed with
the FDC model and compared with the experimental
values. In the Discussion, we show that the FDC model
sheds light on the mechanistic reasons for the kinetic
effects of point mutations in that we relate the alterations
of the folding kinetics to the changes in the number and
stability of the foldons. The FDC model is then used to
address some key issues in the general theory of protein
folding. In particular, we reconsider the effects on the
folding rate of two features, CO and stability, that are
currently viewed as the main determinants of the kinetics
of the folding process.2,6–11 Also, we comment on the
limitations that are inherent in the FDC model. In particu-
lar, the decline of the performance of the FDC model is
traced back to long-range interactions between the foldons
that are poorly accounted for in the present version of the
model. Finally, we discuss the role of foldons as critical
residues for the regulation of the kinetic properties of the
protein.

MATERIALS AND METHODS

Here we summarize the essential steps of the FDC
method. In the FDC model,23 we split the overall folding
dynamics in local fast dynamics and global slow dynamics
that are governed, respectively, by short-range (intraheli-
cal) and long-range (interhelical) interactions. The fast

TABLE I. Structural, Thermodynamic, and Dynamical Data of the �-Repressor and Its Mutants Used
in the Simulations Performed According to the FDC Model

Mutant Helices �1
f �3

f �4
f �5

f �GUF �exp �comp

Wild type 1, 4, 5 (none) 0.099 a 0.050 0.048 �0.86 204 � 25 213
Basic 1, 3, 4, 5 (3) 0.092 �2.65 12 � 2 13
M15 1, 3, 4, 5 (1) 0.006 �0.31 100 � 13 81
M20 1, 3, 4, 5 (1) 0.045 �1.73 17 � 2 18
M37 1, 3, 4, 5 (2) 0.099 0.106 �1.48 10 � 3 12
M49 1, 3, 4, 5 (3) 0.018 �2.11 17 � 1 29
M63 1, 3, 4, 5 (4) 0.092 0.008 �2.35 18 � 2 38
M66* 1, 3, 4, 5 (4) 0.044 �0.93 190 � 40 13
M81 1, 3, 4 (5) 0.050 a �1.63 16 � 4 14

The ends of the crystallographic and predicted helices are detailed in Figure 1. Eight mutations of the �-repressor have
been examined. The basic mutant has two point mutations (glycine to alanine, G46A/G48A) in position 46 and 48, with
respect to the wild type. The seven mutants (M15 to M81) have undergone a further change (alanine to glycine) in
position 15, 20, 37, 49, 63, 66, and 81, respectively. Boldface labels indicate the mutated residues that belong to a foldon
of the basic mutant (Fig. 1). In the second column, we show the IS helices that have been used in our simulations of
folding. Foldons of the basic mutant extend over the following regions: 13–22, 48–49, 63–66, and 82–84. The 48–49
foldon (foldon 3) is lacking in the wild type. The numbers in parentheses in the second column list the helices that have
been involved in the mutational changes on passing from the wild type to the current protein. For easing readability, we
have omitted listing helix 3 in parentheses for the Mx mutants. The missing values of �3

f for the wild type and �5
f for

M81 are attributable to the absence of the corresponding foldon. In the wild type the superscript a indicates that native
helix 3 is not an IS helix. A new foldon appears in native helix 3 only in the basic mutant and all the other Mx mutants.
In the M81 mutant, the superscript a indicates that, upon mutation of the basic mutant, IS helix 5 (shared by the wild
type, the basic mutant and the Mx mutants M15 to M66) is turned into a non-IS helix. Helix 2, in addition, is never
counted as an IS helix. The �i

f values for the IS helices have been calculated from the entropy profile associated with
each protein23. For the coalescence probability of the individual microdomain, we have used �i � �i

f �i
g leaving �i

g �
�WT

g, @i (see Materials and Methods). This entails that changes of �i are entirely attributed to variations of �i
f. To ease

readability, constant values are not repeated. Missing values of �i
f are equal to the last preceding value within the same

column. �GUF is the stability expressed in kcal/mole. In the two rightmost columns, we compare the folding times (in
microseconds) �comp, computed according to the FDC model, with the experimental rates �exp (drawn from Ref. 30). The
asterisk indicates that M66 will be considered an outlier for the reasons explained in the Discussion section.
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dynamics pertain to the helix-coil transitions resulting in
the early formation of marginally stable protostructures
(the IS helices) that undergo thermally activated diffu-
sional motions and binary collisions. The slow dynamics
describe the stochastic formation of the tertiary structure
via progressive aggregation of the IS helices. The subse-
quent coagulation of the IS helices leads to formation of
clusters (microdomains) of increasing rank (the rank equals
the number of the IS helices composing the microdomain
at hand). The birth of a new microdomain at the expense of
the older ones with smaller rank hallmarks the transition
to a new state along the folding pathway. Once all the
microdomains participate in the globular cluster with the
highest possible rank, the folding is complete.

In the context of the FDC dynamics, the crucial parame-
ters are the probabilities �ij that a successful collision
takes place between microdomains i and j. Successful
impacts result in the irreversible aggregation of the collid-
ing microdomains. After an unsuccessful collision, the
microdomains separate and start anew the diffusional

search for their partner. The basic pieces of information
necessary to implement the FDC model are collected by
using a feed-forward neural network which is used to
predict the secondary structure of helical proteins from the
bare sequence. Because the FDC model describes the
folding of helical proteins, we partition the space of
structures predicted by the neural network into � and
non-� structures. The specifics of the neural network are
described in Ref. 23. The neural network is trained with
the error backpropagation algorithm on a database com-
prising 822 proteins from the PDB.26 The neural network
used in this article was trained with single-sequence input
so as to ensure maximal sensitivity to the details of the
protein sequence. Structural predictions are exemplified
in Figures 1 and 4.

Once we have located the native helices we are in a
position to search for the foldons. To this aim, we process
the outputs of the neural network to find out the position of
the foldons and to estimate the probabilities of formation
of the corresponding IS helices. This can be done by

TABLE II. Structural, Kinetic, and Thermodynamic Data of the ACBP Protein

Mutant Helix Cons Network �GUF �exp �comp �f
A1 �f

A2 �f
A4

Wild type �8.08 4.5 � 0.3 3.38 0.057 0.031 0.035
F5A* A1 sf 1 �5.45 15.8 � 0.2 2.98 0.075
A9G A1 s 1 �6.08 15.0 � 1.2 19.49 0.002
V12A* A1 s 2 �6.58 13.7 � 1.1 3.49 0.060
L15A* A1 s 2 �4.51 39.2 � 4.3 3.57 0.058
P19A �7.17 3.1 � 0.3 1.83 0.079 0.060
D21A A2 �7.68 3.1 � 0.3 2.79 0.057 0.045
L25A A2 s �6.06 3.7 � 0.2 1.5 0.011
F26A A2 �6.55 4.8 � 0.2 1.98 0.073
Y28A A2 sf 3 �5.56 1.3 � 0.4 1.98 0.073
Y28N A2 s 3 �5.61 2.7 � 0.3 3.74 0.029
Y28F A2 s 3 �6.82 2.7 � 0.1 4.13 0.025
Y31N A2 f �7.11 4.4 � 0.2 3.77 0.029
K32A A2 sf 3 �6.47 1.9 � 0.1 3.77 0.029
K32E A2 sf 3 �6.61 5.0 � 0.2 2.98 0.041
K32R* A2 s 3 �5.86 7.8 � 1.4 2.48 0.053
Q33A* A2 s 3 �5.05 0.6 � 0.1 4.07 0.026
A34G A2 1 �7.00 3.1 � 0.1 3.25 0.036
T35A A2 �6.80 2.0 � 0.5 2.57 0.050
I39A �7.02 4.0 � 0.3 4.00 0.026
P44A �6.85 4.6 � 0.2 3.61 0.031
K52M A3 �8.56 2.7 � 0.1 3.61
K54A A3 f �6.67 7.2 � 1.7 3.61
K54M A3 f �7.86 6.3 � 0.2 3.61
E67A A4 �7.28 1.8 � 0.1 3.37 0.040
A69G A4 �6.53 5.0 � 0.5 6.68 0.008
Y73A* A4 sf 1 �3.57 51.3 � 11.8 3.17 0.045
Y73F A4 sf 1 �8.11 2.2 � 0.1 3.07 0.048
I74A* A4 �6.74 15.0 � 0.5 5.7 0.012
V77A* A4 s 2 �6.54 33.4 � 1.3 5.10 0.016
L80A* A4 s 2 �3.51 85.4 � 14.5 3.90 0.030

As shown in Figure 4, foldons are predicted in the 7–10, 25–26, and the 70–77 regions (boldface labels in the first column indicate mutations that
affect the predicted foldons). The second column reports the labels of the native helices affected by the mutations studied in Ref. 29. Labels in
italic designate the IS helices predicted by the neural network (A1, A2, and A4). Helix A3 is a normal helix that does not contain any foldons. The
column with the heading “Cons” specifies the conserved residues that are important for stability (s) or function (f). The column with the heading
“Network” highlights the three networks of strong interactions described in Refs. 28 and 29. �GUF is the stability expressed in kcal/mole. �exp and
�comp (in milliseconds) are the experimental and the computed folding times. Experimental stabilities and folding times are from Ref. 29. The
folding probabilities �f of IS helices A1, A2, and A4 are displayed in the last three columns. As in Table I, constant values are not repeated to ease
readability. Missing values are equal to the last preceding value within the same column.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

200 E. CAPRIOTTI AND M. COMPIANI



exploiting the profile of the information entropy S associ-
ated with each protein sequence (Figs. 1 and 4). S is the
Shannon entropy of the discrete probability function de-
fined by the outputs of the neural network.22 The foldons
are detected by applying the minimal entropy criterion22

which is briefly stated in the legend to Figure 1.
The �’s are factorized as � � �f�g, where �f specifies the

folding probability of the colliding IS helices or microdo-
mains. �g (orientational probability) accounts for the geo-
metric factors relevant to the correct positioning of each
helical microdomain within the resulting new microdo-
main. For any pair of interacting microdomains 1 and 2, �f

and �g are factorized as �1
f �2

f and �1
g �2

g whereas �12 � �1
f

�2
f �1

g �2
g. The evaluation of the �fs is performed by taking

into account the depth and the steepness of the entropy
minimum. More details about the thermodynamic mean-
ing of the �f parameters and the procedure devised to
compute them from the entropy profile are to be found in
Ref. 23. In the FDC model, the values of �f are biased in
that we have chosen �f � 1 for multihelical aggregates
with rank 	2.23 A more refined procedure for estimating �f

of microdomains comprising two helices was presented in
Ref. 25.

The �g are usually computed from the three-dimen-
sional (3D) structure of the protein. They are related to the
loss of solvent accessible surface that the microdomains
suffer as they take on their own native structure.23,25 The
program DSSP27 provided the accessible surfaces of the
various helices as well as the surface that is lost upon
formation of multihelical microdomains. Because the struc-
tures of the mutants are not available, we assigned the
same �g derived from the wild type to all the mutants
examined here. This is a reasonable approximation for the
alanine-glycine mutants of 1LMB4 that are usually as-
sumed to minimize variations in the network of interac-
tions.28 The several mutations performed on ACBP are
less homogeneous under this respect, so that the same
assumption is less safe.

The set of the �ij and the geometric information regard-
ing the relative positions of the IS helices and their sizes
allow calculation of the mean first passage time for the
coalescence of any pair of microdomains. Such a time
defines the rate constant to be used in a master equation
which describes the probability flux among different states
of the folding process. Any change of state corresponds to
some variation of the number and rank of the microdo-
mains at any instant of time. The state with the highest
rank possible represents the folded protein. The time
required for the probability of the final state to reach a
threshold value (0.6 in the present work as in most of the
applications of the DC model24) defines the folding time of
the protein. The basic equations used to pass from the
thermodynamics of the elementary events to the kinetics
of the whole folding process are reported in Refs. 24 and
25.

RESULTS

The structural, kinetic, and thermodynamic properties
of the �-repressor and ACBP have been examined by
means of extensive single-site mutation experiments.28–30

These proteins lend themselves as challenging bench-
marks for the FDC model. Following the procedure re-
ported in the Materials and Methods section, we use a
neural network to predict the secondary structure of the
wild types and their mutants. The same neural network is
then used to determine the location and thermodynamic
properties of the IS helices. In stating the results, we
emphasize the data concerning the �f parameters, that
estimate the thermodynamic stability of the IS helices,
and determine the coalescence probability of the colliding
IS helices during the diffusion-collision dynamics (see
Materials and Methods).

Analysis of 1LMB4 and Its Mutants

1LMB4 is the �6–85 monomeric version of the N-
terminal domain of the �-repressor (see Ref. 30 and
references therein). The mutants examined in this article
are described in Table I.

The analysis of 1LMB4 starts from the entropy plot of
the wild type and all its mutants. In Figure 1 we display
the entropy plot of the basic mutant because it possesses
the maximum number of foldons. According to the FDC

Fig. 1. Profile of the information entropy S versus residue number of
the basic mutant of the �-repressor calculated according to the neural
network-based procedure of Ref. 22 (see text). The step function
superimposed to the curve indicates the location of the five �-helices
predicted by the neural network. Crystallographic boundaries of the
helices (in parentheses), predicted helices (in parentheses), and dis-
tances from the preceding helix (in square brackets) in the basic mutant
are: helix 1 (9–29) (predicted 9–26), helix 2 (33–40) (predicted 33–40)
[3], helix 3 (44–51) (predicted 44–51) [3], helix 4 (59–69) (predicted
54–70) [7], helix 5 (78–88) (predicted 79–90) [8]. The entropy profile of
the wild type differs from the present plot only in the region corresponding
to foldon 3. Helix 3 is correctly predicted by the neural network also in the
wild type but the entropy profile in that region, according to the criterion
proposed below, does not reveal any foldons (see Fig. 3). To detect the
protein’s foldons, we look at the predicted helices with an entropy
minimum that is lower than the threshold entropy S � 0.416 introduced in
Ref. 31 (helices 1, 3, 4, and 5 in Fig. 1 fulfill this criterion). Because of the
noise that affects the entropy signal36 we associate foldons with minima
whose depth is larger than 0.05.22 Shallower minima are considered
nonsignificant fluctuations of the signal. The predicted helices containing
a foldon comprise the set of the IS helices. In the basic mutant (obtained
performing mutations G46A/G48A on the wild type), the foldons span the
13–22, 48–49, 63–66, and 82–84 segments.
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model, the critical regions for folding the basic mutant
correspond to the four foldons indicated in Figure 1. The
foldons and the IS helices are referred to according to the
numbering of the native helices in which they are com-
prised (see Fig. 1). The mutations of 1LMB4 listed in Table
I affect sequentially all of the five native helices of the wild
type. As shown in Figure 1, helix 2 does not belong to the
class of the IS helices. Accordingly, it does not contribute to
the FDC dynamics. It should be noted that the wild type
possesses only three foldons. In fact, native helix 2 is
successfully predicted by the neural network but does not
meet the requisites to qualify as an IS helix (see legend to
Fig. 1).

Application of the FDC model results in estimates of the
folding rate that are in good agreement with the experimen-
tal values (see Fig. 2 and Table I). The reason for the large
deviation obtained for M66 is discussed below in the
Discussion section. At this stage, the effects of the muta-
tion are visible through the changes in the folding rates.
However, we can improve our understanding of the modi-
fied folding dynamics of the mutants by tracing back the
kinetic effects of the mutations to the properties of the
foldons. We first discuss the mutations that affect the
stabilities of the four foldons of the basic mutant. In M15,
�1

f is substantially reduced with respect to its original
value and the rate is correspondingly lowered. Similarly,
in M20 the mutation lowers �1

f , albeit by a smaller amount
than in M15, and the change in the folding rate is less
dramatic. In M37 the mutation affects helix 2 that does not
belong to the set of the IS helices. The entropy profile (not
shown) makes it evident that mutation propagates only
weakly to IS helix 3 so that the ensuing minimal change in
�3

f leaves the rate practically unaltered.
In M49 and M63 foldon 3 and, respectively, foldon 4

become less stable and the rate is lowered. The result
obtained for M49 shows that a strong modulation of �3

f

entails only a very moderate variation of the folding rate.
The rates of M49 and M63 also show that the same relative
variation in different foldons may result in the same slight
kinetic change. On the contrary, the folding times of the
M63 and M66 mutants exhibit largely unequal susceptibili-
ties to the same mutation performed in different positions
within the same foldon (foldon 4).

Mutations like those resulting in the basic mutant or in
the M81 mutant modify the folding kinetics also through a
second mechanism involving the change of the number of
the foldons. Actually, the double mutation glycine to
alanine in positions 46 and 48 (G46A/G48A), performed on
the wild type to get the basic mutant, results in the birth of
the strong foldon 3. The subsequent mutation leading to
the M81 mutant, in turn, involves the death of foldon 5.
Figure 3 visualizes the modifications of the entropy profile
associated with these two mutations.

The birth of a foldon in IS helix 3 on passing from the
wild type to the basic mutant is responsible for the nearly
20-fold decrease of the folding time. This effect is partially
reversed in the M15 mutant through the stability change
mechanism. In M15, foldon 1 is dramatically destabilized
to the extent that its �f is nearly nullified, resulting in a
change of the rate that is, however, half that observed in
the wild type. A similar though less neat effect is visible in
the M81 mutant. In this case, although foldon 5 disappears
(�5

f value lacking in Table I), we get a minor change in the
folding time to the extent that the kinetic properties of
M81 are nearly the same as those of the basic mutant. The
quite different kinetic susceptibility to foldon subtraction
is probably attributable to the different location of the
foldons involved (foldon 1 or 3). Actually, we expect that
the entropic effect elicited by a mutation is larger when the
target foldon has an internal location (foldon 3) rather
than when it is part of the N-terminus or C-terminus
helices (foldon 5). Inspection of the 3D structure of 1LMB4
shows that there is also a structural ground for the
relatively minor importance of foldon 5. As a matter of fact,
IS helix 5 hardly contacts the body of the protein. The
small contact area (see also Table 4 in Ref. 25) suggests
that it can be viewed as a nearly autonomous folding unit.
Therefore, it is likely that the rate-limiting step of the
folding process is driven essentially by foldons 1, 3, and 4.

The different response to the strong destabilization of
foldon 1 in M15 and foldon 4 in M63 is also quite striking.
This effect suggests that the folding process is less sensi-
tive to the destabilization of a weak foldon than to a
similar modulation performed on a strong foldon. This
finding and the failure to reproduce correctly the rate of
the M66 mutant deserve a more detailed discussion that is
deferred to the Discussion section.

Analysis of ACBP and Its Mutants

Experimental data on ACBP are taken from two detailed
mutational analyses.28,29 The entropy profile of ACBP is
displayed in Figure 4. The folding kinetics of ACBP is quite
faithfully reproduced by the three IS helices (A1, A2, and
A4) out of the four native helical segments, predicted by

Fig. 2. Correlation of the computed and experimental folding times for
1LMB4. The plot visualizes the data of Table I. The correlation coefficient
amounts to 
 � 0.67, but increases significantly (
 � 0.98) if we exclude
the unfavorable result obtained for M66. The outlier M66 is indicated by a
square. The bisecting line (ideal case with 
 � 1) is shown to visually
estimate the spread of the kinetic data. See Discussion for a more
complete statistical analysis.
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the network and shown in Figure 4. Helix A3 does not
belong to the set of the IS helices.

The folding times resulting from the application of the
FDC model are summarized in Table II, where they are
supplemented with details concerning the foldons and
their stabilities. The folding times of many mutants are
predicted with moderate deviations from the experimental
values. To ease further analysis, the most significant
deviations (exceeding by a factor 2.5 the experimental
value) are signaled by an asterisk.

Generally, the least perturbing Ala-Gly mutants are
well predicted by the FDC model even when they undergo
strong intramolecular interactions (for example, A9G and
A34G). A69G is not at all involved in any intramolecular
interaction network and is a fortiori correctly predicted.

Mutations L25A and F26A modify the stability of foldon
A2 but are not involved in any interaction network. On the
whole, the changes in local stability are therefore suffi-
cient to describe the ensuing change of the folding rate
within the assigned tolerance range. Mutations affecting
the residues participating in the interaction networks 1, 2,
and 3 (Table II) are discussed in more detail in the
Discussion section.

The results obtained for ACBP are epitomized in Figure
5. The data reported in Figure 5 (correlation with experi-
mental rates 
 � 0.85) do not include the outliers of Table
II (marked with an asterisk) to which we devote a more
thorough analysis in the Discussion section.

DISCUSSION

The present application of the FDC model to the mu-
tants of 1LMB4 and ACBP is aimed primarily at ascertain-

Fig. 3. Details of the information entropy profile of 1LMB4 versus residue number (see Fig. 1) which
illustrate the birth and death of a foldon attributable to point mutations. a: Performing the basic mutation
G46A/G48A on the wild type, changes locally the entropy profile of helix 3 (squares) into an entropy minimum
that is eligible as a foldon (diamonds). A new foldon appears and helix 3 is turned into an IS helix. This
corresponds to adding a microdomain to the FDC model. b: IS helix 5 of the basic mutant (diamonds) turns to a
normal helix (squares) upon mutating residue 81. The new shallow minimum of helix 5 of M81 has a depth
smaller than the threshold value 0.05 (see legend to Fig. 1). The minimum of the new entropy profile does not
comply with the criterion presented in Ref. 23. This signals that foldon 5 disappears. The folding dynamics of
M81 depends on foldons 1, 3, and 4.

Fig. 4. Entropy profile of ACBP, drawn following the procedure
reported in Ref. 22. Native helical traits are marked by the step function
superimposed on the entropy plot. Crystallographic boundaries of the
helices (in parentheses), predicted helices (in parentheses), and dis-
tances from the preceding helix (in square brackets) in ACBP are: helix A1
(3–15) (predicted 2–13), helix A2 (21–36) (predicted 22–30) [5], helix A3
(52–62) (predicted 56–61) [15], helix A4 (65–84) (predicted 66–83) [2].29

According to the defining criterion for foldons (see legend to Fig. 1), only
helices A1, A2, and A4 are counted as IS helices.

Fig. 5. Correlation of the computed and experimental folding times for
ACBP. The outliers (asterisks in Table II) are not included in the plot for
the sake of the readability of the diagram. The bisecting line is shown to
visually estimate the spread of the kinetic data.
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ing the sequence sensitivity of the model to point muta-
tions. The general conclusion suggested by the results of
Tables I and II and Figures 2 and 5 is that the dynamics of
foldons capture the essentials of the folding process and
the FDC model exhibits a resolution at the residue level
that enables it to perceive the perturbations of the folding
kinetics induced by point mutations. The factors that limit
the sequence sensitivity of the FDC model are thoroughly
discussed below.

To comment on the implications of our results, we
remind that the basic tenet of the FDC model is the
existence of a simplified description of folding in terms of a
reduced set of essential residues (foldons). Accordingly, the
FDC model suggests that one of the native helices in each
of 1LMB4 and ACBP wild types is not counted among the
IS helices (compare Fig. 1 with Table I and Fig. 4 with
Table II). The folding dynamics of 1LMB4 and ACBP (wild
types) are then ruled by four and, respectively, three
foldons. Intriguingly, the number of foldons is not invari-
ant upon mutation. As shown in Table I, in the basic
mutant of 1LMB4, an additional foldon is created as a
consequence of the G46A/G48A double mutation, whereas
foldon 5 is destroyed in mutant M81. We come back later to
these specific cases.

In the case of 1LMB4 wild type, the reduction of
variables accomplished by the foldon dynamics highlights
the notable selectivity of the FDC model. Actually, that the
maximal set of irrelevant variables is neglected and,
correspondingly, the minimal set of critical residues for
reconstructing the folding process is taken into account
can be appreciated if we compare the FDC model with
other reduced pictures of the folding dynamics. A cogent
example is reported in Ref. 30. In that work, the same set
of mutants of 1LMB4 as in Table I was studied, by
assuming that all the five native helices contribute to the
folding dynamics. Also, they were taken to obey a slow
diffusional process depicted in terms of the DC model24 as
in the FDC model. The two approaches differ as to the
determination of the �f parameters which, in Ref. 30, is
based on the AGADIR algorithm. Despite the major simpli-
fication achieved, the FDC model is more accurate because
less satisfactory correlations with the experimental rates
are obtained in Ref. 30. A quantitative statistical analysis
of our results is performed below after detailed discussion
of the sources of error inherent in the FDC model.

However, it should be noted that the simplification of the
folding dynamics inherent in the FDC model does not
imply neglect of the critical stages of the process. On the
contrary, the simplified picture makes it easier to investi-
gate the kinetics and the sequence of the critical folding
events. For example, the FDC model was useful to eluci-
date the essential steps of folding of three-state proteins
and to reproduce the switch from a two-state to a three-
state folding mechanism in proteins belonging to the same
family.25 Further support to the completeness of the FDC
description is provided by evidence regarding the involve-
ment of the foldons in the transition state of the folding
process of 1LMB4 and ACBP (M. Compiani, E. Capriotti,
and M. Vendruscolo, unpublished results). This is to be

expected because of the remarkable effectivity of the FDC
model emerging from the present article and previous
works.23,25 Finally, the key role assigned by the FDC
model to the residues in foldons A1 and A4 of ACBP and
their bordering regions (residues 5, 9, 12, 15, and 73, 74,
77, and 80) is confirmed by experimental data showing the
participation of the same residues in the stabilization of
the rate-limiting native-like structure (RLNLS) via ter-
tiary contacts occurring between the IS helices A1 and
A4.29 Notably, existence of such an RLNLS is in keeping
with the predictions of the FDC model. Actually, our
calculations show that only two intermediate steps are
slightly populated during the folding process. They corre-
spond to coalescence of helices A1 with A4, and A1 with A2,
with aggregation A1–A4 occurring before aggregation A1–
A2. In general, we expect that the foldons mediate the
essential interactions, both local and long range.

These findings make us confident about relying on the
foldons to investigate the mechanisms that underpin the
effects of mutations. The first general conclusion is that
the “accelerator pedals” of 1LMB4 and ACBP lie in the
foldons. The clearest examples are the basic mutant, M15
and M66 of 1LMB4, as well as the A9G, Y73A, I74A, and
V77A mutants of ACBP. It should be noted that mutations
performed in the residues not included in any foldons but
lying in their immediate neighborhood may affect the
folding kinetics to the extent that the change of the
entropy profile extends to the entropy minimum that
defines the foldon proper. These effects, no matter how
small, are visible in the M20, M37, and M81 mutants of
1LMB4 and the F5A, V12A, L15A, P19A, D21A, and L80A
mutants of ACBP, as well as in most mutants correspond-
ing to mutations performed in IS helix A2.

A basic consequence is that foldons are the critical
targets of mutations that are intended to induce large
kinetic effects. The corollary of this statement is that
mutations are expected to be kinetically neutral in the
case they affect coil regions or the non-IS helices. To be
sure, this does not rule out that other mutations affecting
the foldons elicit very modest effects. This is the case of
M20, M49, and M63 of 1LMB4, or L25A, F26A, and Y73F
of ACBP.

That the foldon dynamics turn out to be sensitive to
sequence-specific features (within the limits discussed
below) is especially evident from the study of M15 and M20
and also M48 and M49 of 1LMB4, where our calculations
correctly predict that two mutations falling in the same
foldon induce remarkably different modulations of the
folding rate. The FDC model performs worse on other
mutants in which the mutations affect alternative posi-
tions within the same foldon (e.g., mutant M63 as com-
pared with mutant M66 of 1LMB4). These cases are
discussed in more detail in the sequel of this section.

The second general lesson we learn from the 1LMB4 and
the ACBP case studies is that two main mechanisms are at
work in controlling the dynamics of folding. The first kind
of control is through the modulation of the �f of the
available IS helices, whereas a further kind of regulation
is made possible through the mutation-induced change of
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the number of foldons and IS helices. These two mecha-
nisms suggest that the FDC model is in principle consis-
tent with the notion proposed in the current literature that
CO and stability are the two major determinants of
folding.2,6–13 This poses the intriguing question of how
these two key features of folding are related to the stability
and distribution of foldons. To discuss this topic, let us
introduce the essential stability �ess as an estimate of the
contribution of local interactions to the overall stability of
the protein under study. Essential stability is defined as
�ess � ¥�i

f, with index i running over the set of the IS
helices. The stability factor is clearly related to �ess that, in
turn, reflects the intrinsic helical propensity of the IS
helices (see the Introduction).23 This implies that our
results are consistent with but also more specific than the
general conclusion that reinforcing the propensities of the
native helical structures accelerates the folding pro-
cess.13,32–35 Instead, CO is to be related to the average
separation of foldons in sequence (see below for further
comments on CO and foldon topology).

Clearly, by insisting on �ess, we are stressing that the
FDC model depends critically on local interactions. How-
ever, the visible failure of the FDC model applied to some
particular mutations [notably M66 of 1LMB4, and L15A as
well as the Y73A to the L80A mutants of ACBP (except
Y73F)] calls for a thorough reconsideration of the basic
assumptions and limitations of the FDC model. In this
connection, it is convenient to mention the principal
sources of error of the FDC model. We start by noting that
prediction of the �-helices is affected by some noise.
Sometimes, the neural network mispredicts some native
helices. In the proteins of interest here, the effects of noise
are signaled by the presence of underpredicted or overpre-
dicted residues at the boundaries of the helices (compare
the crystallographic and predicted helices in the legends to
Figs. 1 and 4). This side effect is, however, ineluctable
because some level of noise in the output signal is neces-
sary to ensure the generalization capability of the neural
network.36 Interestingly, the poor performance of the FDC
model in predicting the folding time of M66 seems to be
amenable to factors having different origin, otherwise we
could hardly successfully predict the moderate effect of the
remarkable destabilization of the same foldon 4, per-
formed in mutant M63. In addition, that the generaliza-
tion capability of the neural network is not in question is
also hinted at by the finding that in Ref. 30, the reconstruc-
tion of the folding dynamics of the same set of proteins
without exploiting neural network-based methods, simi-
larly fails to reproduce the experimental folding rate of
M66.

Having ruled out the noise affecting the entropy signal
as a performance-limiting factor, we are brought back to
consider global interactions. In general, the delicate bal-
ance between local and global interactions is a matter of
debate in the literature.37–41 Precise assessment of the
relative strength of these interactions is normally made
even more elusive as they are susceptible to large varia-
tions along the protein’s sequence.42 If we neglect the
contribution of the random coil regions, we can surmise

that the changes of total stability of the protein can be
approximately decomposed into a variation of local (intrin-
sic) stability of the helices plus a contribution from the
interhelical forces (long-range or packing interactions).43

Evidently, variations of �ess cannot account neither for
changes in the long-range interactions among the colliding
IS helices nor the stability change of the non-IS helices. If
we neglect the non-IS helices, only in the case the helix
packing interactions are roughly fixed on mutating the
wild-type protein, the change of �ess is expected to reflect
the overall change of stability. Nonetheless, these approxi-
mations inherent in the estimation of the stability factor
through �ess are somewhat reduced because stability
changes attributed to long-range interactions are implic-
itly, albeit only partially, taken into account in the FDC
model. Actually, a moment’s reflection shows that the
geometrical factors �g capture, at least to some extent, the
influence of global forces because these factors depend on
the mutual orientation and position assumed by any
couple of IS helices and microdomains within the native
structure. This seems to be the case for the wild types and
the mutants for which we get good estimates of the folding
times (Tables I and II). Conversely, in the less favorable
cases extrapolating the �g from the wild type to any
mutants (section Materials and Methods) may be condu-
cive to poorly estimate the changes of tertiary interactions.
Such an approximation can be mitigated only to the extent
that the actual variation of �g is negligible with respect to
the change of �ess.

The preceding arguments suggest that the performance
of the FDC model is critically dependent on the engage-
ment of the mutated residues in long-range interactions.
More precisely, the more biased toward local forces the
balance of the interactions the mutated residue is involved
in, the more effective the FDC model in describing the
folding dynamics.

If we turn to a more thorough examination of Table I, it
is quite clear that this interpretation applies to our results
for the two critical residues 15 and 66 of 1LMB4. Actually,
our explanation is consistent with a recent investigation
stressing that Ala 15 and Ala 66 are linked by a very
strong long-range mutual interaction and correspond to
the most stable residues of 1LMB4.42 A semiquantitative
demonstration of this basic idea is provided by the histo-
grams of Figure 6, showing that the largest discrepancy
between total stability change and essential stability
change is maximal for the worst predicted mutant M66.
This confirms that long-range interactions are the main
causes for the decline of performance of the FDC model. A
look at the native structure offers additional insight on the
different roles of residues 20 and 63 as compared with
residues 15 and 66. The latter amino acids are seen to have
a larger number of spatial neighbors (within 4 Å) that are
somewhat distant in sequence. Residue 15 contacts with
the 50’s residues whereas residue 66 contacts with the 70’s
residues.

The asymmetric effect of the same Ala-Gly mutation in
positions 15 and 66 and the different precision attained by
the FDC predictions for the two mutants can be rational-
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ized by means of a similar argument. Residue 15 lies in the
most stable foldon, as evident from the corresponding �1

f

value (Table I). Unlikely, residue 66 belongs to the second
least stable foldon. For the latter mutant, the variation in
long-range interactions has a major relative weight with
respect to the change of short-range interactions (i.e., �ess).
Conversely, the local contribution to stability reflected by
�ess is likely to be more significant for M15 than for M66, so
that the change in essential stability of M15 describes
more accurately the total stability change.

Also, in the case of ACBP, we maintain that marked
discrepancies between experimental and computed folding
rates are likely to occur whenever significant native ter-
tiary interactions involve the mutated residue. The pro-
posed explanation is consistent with the finding that most
of mutations of Table II for which we get the worst results
(marked with an asterisk) are directed onto residues that
are conserved for stability and belong to networks of
interhelical interactions.28 More precisely, as shown in
Table II, the most relevant interactions take place among
Phe5, Ala9, and Ala34 with Tyr73 (cluster 1); Val12,
Leu15, and Val77 with Leu80 (cluster 2); Tyr28 and Lys32
with Gly33 (cluster 3). Remarkably, most of the interheli-
cal interactions associated with the mispredicted mutants
of Table II involve the foldon-spanning regions of IS
helices A1 and A4, or their immediate neighborhood (with
the exception of K32R and Q33A). This confirms the fact
that the foldons are involved in the key long-range interac-
tions. Instead, the A9G and A34G mutants are relatively
well predicted although the mutated residues are interact-
ing within cluster 1, probably because Ala to Gly muta-
tions are known to minimally interfere with the preexist-
ing network of interactions.28 The shift of the force balance
helps to also explain the data for K54A and A69G. These
two mutations involve approximately the same destabiliza-

tion, but the FDC result for the former is worse than for
the latter because K54 has more van der Waals interac-
tions.28 The subset of minimally perturbing mutations of
2ABD comprises A9G, Y28F, A34G, A69G, and Y73F that
are well predicted. The combined effect of long-range
interactions and the defective extrapolation of �g are
visible in the unsuccessful prediction of Y73A as compared
with the good prediction of Y73F. Mispredictions of I74A
and V77A are presumably attributable to the wrong
extrapolation of �g. The unique feature of the A9G mutant
that justifies its exclusion from the set of the outliers
(despite its participation in interaction cluster 1) is the
same we have invoked to explain the asymmetric effects of
the mutations in M15 and M66 of 1LMB4. Accordingly, the
satisfactory prediction of A9G is attributed to the local
interactions dominating the force balance in the first (most
stable) foldon of 2ABD.

Properties such as conservatism, stability, and engage-
ment in transition state-like states are often associated
with the putative determinants of folding. The detailed
analysis summarized in Table II shows that these requi-
sites apply to the foldons or their neighboring residues.
This reinforces our claim that foldons comprise the funda-
mental regions for the folding dynamics. As far as stability
as one of the determinants of folding is concerned, Ref. 28
indicates that many of the residues that substantially
contribute to the stability of ACBP are conserved [marked
with an (s) in Table II]. Careful scrutiny of Table II shows
that these residues are found in the foldons or close to their
ends. The paramount importance of foldons is also con-
firmed by the finding that the four foldon residues A9, Y73,
I74, and V77 are involved in the formation of the RLNLS
as stressed in Ref. 29. The remaining RLNLS residues F5,
V12, L15, and L80 are also quite close to the ends of the
two external foldons A1 and A4 (see legend to Table II). In
addition, Table II shows that the eight RLNLS residues
(F5, A9, V12, L15, Y73, I74, V77, and L80) are conserved.
This is also in keeping with the conclusions of our previous
preliminary work on the conservatism of the foldons of
aligned proteins.44 Finally, independent preliminary evi-
dence about the participation of foldons in the transition
state (M. Compiani, E. Capriotti, and M. Vendruscolo,
unpublished results) is also consistent with the conserva-
tion of the residues involved in the transition states.13,45,46

The same reasoning illustrated in Figure 6 can be
conducted also for ACBP. Figure 7(a and b) helps to trace
back the failure of the FDC model on some mutants of
ACBP to the fact that the modulations of the essential
stability �ess are no longer dominating over the interac-
tions with distant amino acids. In Figure 7(a) we compare,
for all the mutants of Table II, the relative deviations in
stability (with respect to the wild type) and the relative
errors incurred by the FDC estimates with respect to the
experimental values of the folding time. The most remark-
able peaks are coincident in both histograms showing that
the most defective predictions of the folding kinetics are
linked essentially to substantial alterations of stability.
The true source of error emerges clearly from Figure 7(b)
which visualizes the divergence of the relative change of

Fig. 6. Histograms displaying thermodynamic parameters of 1LMB4.
White bars denote �10(�GUF � �GUF

bas)/�GUF
bas (superscript refers to the

basic mutant). Gray bars show �10(�ess � �ess
bas)/�ess

bas. The difference
between any two coupled bars tells us how much the essential stability
lags behind the real stability change. The largest discrepancy between the
two indicators occurs for M66, for which the FDC calculation visibly fails
(see Table I). Misprediction of the folding rate is thus traced back to the
maximally defective estimate of the mutant’s stability provided by �ess.
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�ess from the relative change of total thermodynamic
stability of the protein (changes are with respect to the
wild type). Comparison of the plot of Figure 7(b) with the
histograms of Figure 7(a) indicates that the mutants for
which the change of �ess is maximally deficient in mirror-
ing the stability change coincide with the mispredicted
mutants [peaks of Fig. 7(a)]. This provides compelling
evidence that the precision of the FDC model is reduced so
long as nonlocal interactions (not accounted for by �ess)
become too strong as compared with the local interactions.

After stressing the factors limiting the validity of our
prediction method, a more complete correlation analysis
can be performed to quantify the reliability of the FDC

model. The remarks made in this Discussion have clarified
that it makes sense to restrict statistical analysis to the set
of the minimally perturbing mutations that allow safe
extrapolation of the �g factors from the wild type and for
which local energetic factors dominate over long-range
interactions. Therefore, we consider all the mutants of
1LMB4 except M66 and the set of the A9G, Y28F, A34G,
A69G, and Y73F mutants of 2ABD. For the sake of brevity,
we denote collectively these mutants the AGYF set. To
perform the statistical check under the most stringent
conditions, we have compared two statistical indicators
(correlation coefficient 
 and Spearman correlation 
S

47)
with and without the two data that presumably have
overwhelming weight within the set (1LMB4 wild type and
mutant A9G of 2ABD). The relevant statistics for the
AGYF set are: 
S � 0. 98 and 
 � 0.99 (A9G included) and

S � 0.98 and 
 � 0.95 (A9G excluded). The corresponding
estimates of 
 and 
S for the Mx mutants of 1LMB4 are

S � 0.99, 
 � 0.99 (including the wild type), and 
S � 0.99,

 � 0.94 (excluding the wild type). Interestingly, the
calculations performed in Ref. 30 lead to 
 � 0.56 and 
 �
0.82 (with and without M66, respectively) to be compared
with our data in Figure 2, 
 � 0.67, and 
 � 0.99 (with and
without M66, respectively).

Correlations for the AGYF set of 2ABD are: 
S � 0.70,

 � 0.67 (excluding A9G) and 
S � 0.83, 
 � 0.98 (including
A9G). Expectedly, correlations decline when estimates are
computed over the whole set of 2ABD mutants (outliers in
Table II excluded). Including A9G we get 
S � 0.28, 
 �
0.85. This is to be ascribed to the fact that, in this case,
most of the mutations do not belong to the AGYF set. The
remarkable reduction of 
S is mainly attributable to the
incapability of the FDC model to reproduce the tiny
fluctuations (with respect to the wild-type rate) of the
folding rate of those mutants in which the mutations affect
portions of the sequence that are distant from the foldons.
In these cases, the mutations in question hardly affect the
entropy profile of the nearest foldon resulting in a nearly
constant folding time. Excluding A9G, both figures de-
crease dramatically indicating that the good correlation
depends heavily on the individual A9G mutant. To be sure,
this statistical analysis has only provisional character
because of the paucity of the available data. Nonetheless,
we believe that the importance of foldons is quite safely
established also by the qualitative result that, irrespective
of the accuracy of the FDC predictions, the foldons com-
prise the kinetically hot residues of the proteins studied,
i.e., those residues that upon mutation may be conducive
to dramatic changes of the folding time. The explanatory
value of the FDC model resides mainly in the identification
of the critical residues for the kinetic control of the folding
process with the foldons. The foldons are also useful to
establish a link between folding properties and specific
intramolecular interactions. In this respect, we have ascer-
tained that the most frequent regulation mechanism relies
on the modulation of the foldon stability.

A second effective mechanism to control protein folding
kinetics emerges from the case study of 1LMB4, where
inducing the birth or death of foldons in the wild type gives

Fig. 7. Histograms displaying thermodynamic and kinetic parameters
of ACBP. a: White bars denote �10(��GUF/�GUF). ��GUF is the variation
of �GUF (free energy change of the folding process) on passing from the
wild type to the current mutant. Gray bars visualize the deviation of the
computed folding rate (�comp � �exp)2/6,000 for the current mutant. The
numerical proportionality factors were introduced to bring both histograms
to the same scale. Interestingly, the most remarkable deviations occur for
the same mutants that essentially correspond to the outliers of Table II
(marked with an asterisk). This indicates that large stability changes are
correlated with large mispredictions of the FDC model. b: Trends of the
relative deviations of the free-energy change accompanying the folding
process �GUF and the essential stability �ess (see text) of the mutants of
ACBP. The plotted parameters are �100(��GUF/�GUF) (diamonds) and
�100(��ess/�ess) (squares). �f indicates the difference of the generic
parameter f on changing from the wild type to the mutated protein.
Positive variations of these parameters indicate loss of stability. Super-
script WT refers to the wild type. The two plots exhibit the most sensible
divergence for the outliers of Table II (labels with asterisk). For the same
mutants, (a) shows that the FDC model leads to sensible underestimation
of the folding rate. Comparison of (a) and (b) hints at the fact that
mispredicted rates are attributable to the defective estimation of the
current �GUF through �ess. The exceptional cases of I74A and V77A are
commented on in the text.

PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot

FOLDONS DESCRIBE THE FOLDING OF MUTANTS 207



rise to substantial changes of the folding kinetics. The
death or birth of foldons (Fig. 2 and Table I) changes the
number of the microdomains taking part in the folding
dynamics and modifies the distances in sequence of the
extant foldons. To address the issue of how the separation
in sequence of the foldons is quantitatively related to the
CO, one needs to resort to the 3D structures of the mutants
which, however, are not available. Nonetheless, a qualita-
tive relationship is clearly present as, seemingly, both
variables share a common physical origin. Actually, in
both cases, we are confronted with entropic effects on the
folding dynamics because the separation in sequence
either of the foldons or the contacting residues (within the
native structure) determines the volume of the configura-
tion space to be explored before effective collisions promote
formation of native contacts. That this may be the relevant
factor is suggested by the arguments invoked in recent
discussions, where the good correlation between CO and
folding rates is interpreted in terms of entropy effects.48,49

The FDC model holds promise to be useful in a more
general sense. For example, detection of critical residues is
the main goal of protein engineering methods that investi-
gate the transition state and the folding pathway at the
residue level.50,51 In this sense, the FDC model is a
promising substitute that, because of its sequence sensitiv-
ity, can be used to perform a preliminary screening of the
putative kinetically hot residues. Much in the same spirit
as the single-site thermodynamic mutation method,42 the
FDC model lends itself to conduct simulated mutation
experiments that might be useful to direct mutation
studies onto the minimal set of putative controllers of the
folding process, thus avoiding blind and extensive experi-
mental mutant analysis. In this respect, the FDC model
exemplifies how the study of the folding mechanism may
be instrumental to the rational design of proteins with
specified kinetic properties.52

At a more general level of organization, the current focus
on the integration of proteins within complex interaction
networks brings to the foreground the issue of control. In
this framework, one can take advantage of the FDC model
as an effective predictor of the kinetic effects of mutations,
to link kinetic control of single protein folding with the
temporal dynamic changes at network scale.53

Viewed in these terms, the FDC model can be fruitfully
used as a powerful tool to connect the molecular level to
the higher levels of analysis proper to functional modules,
as required by the ongoing transformation of cell biology
into a modular cell biology.54

Our results emphasize the role of foldons as cooperative
semi-independent units. In this respect, a quite meaning-
ful finding regards the striking correlation between the
helicities of the IS helices, estimated in the framework of
the native structure from the �f parameters, and the
experimental helical content of the same IS helices iso-
lated from the remainder of the protein.23 The central role
of foldons is also in accord with recent speculations about
the modularity of protein folding mechanisms and the
importance of preorganized elements of secondary struc-
ture.55,56

In Ref. 56, the relevant role played by cooperative units
was anticipated to have “important implications for a
variety of protein properties including cooperativity, stabil-
ity, design, evolution and function.” The FDC model seems
to offer new avenues on most of these items. That the FDC
model sheds light on stability, evolution, and design is
quite evident from the arguments reported in this discus-
sion. It should be added that the results of the present
article and previous works on two- and three-state fold-
ers23,25 confirm that the sequential stabilization of foldons
and their aggregates provide a quite general key for also
understanding the folding mechanisms of helical proteins.
In particular, the use of the FDC model as a unifying
mechanism of folding and a tool to quantitate the coopera-
tive character of folding mechanisms is illustrated in a
forthcoming article (M. Compiani, submitted).
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