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Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which
their approval is based. Many therapeutic compounds are ineffective for a large subpopulation
of patients to whom they are prescribed; worse, a significant fraction of patients experience
adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many
drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption
of patient-specific approaches, it is useful to understand the molecular details underlying vari-
able drug response among diverse patient populations. Over the past decade, progress in
structural genomics led to an explosion of available three-dimensional structures of drug
target proteins while efforts in pharmacogenetics offered insights into polymorphisms
correlated with differential therapeutic outcomes. Together these advances provide the oppor-
tunity to examine how altered protein structures arising from genetic differences affect
protein–drug interactions and, ultimately, drug response. In this review, we first summarize
structural characteristics of protein targets and common mechanisms of drug interactions.
Next, we describe the impact of coding mutations on protein structures and drug response.
Finally, we highlight tools for analysing protein structures and protein–drug interactions
and discuss their application for understanding altered drug responses associated with protein
structural variants.
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1. INTRODUCTION

Population-level statistics irrefutably demonstrate the
benefits of pharmaceutical innovation over the past cen-
tury, which has seen the introduction of antibiotics,
statins and cancer therapeutics. Rapid advances in
the fields of genomics, proteomics and biotechnology
have fuelled the drug discovery process. Yearly from
1982 to 2010, an average of 18 drugs were approved
for human use by the US Food and Drug Adminis-
tration (FDA), with approximately four acting on
novel target structures [1].

Yet, in spite of this historical success, the pharmaceu-
tical industry continues to face exceptional challenges.
Over the past decade, escalating investments in basic
and clinical research have not seen equal returns. Instead,
both the developmental rate of new molecular entities
and the approval rate of new drugs have dropped by
roughly 50 per cent [2,3]. During clinical development,
orrespondence (russ.altman@stanford.edu).
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efficacy and safety concerns contribute equally to the
attrition of candidate drugs [4]. Even marketed drugs
display limited efficacy, with studies showing them to
be effective for only 30–60% of the patients to whom
they are prescribed [5,6]. Furthermore, for many
drugs whose therapeutic windows are narrow and the
consequences of adverse events are life-threatening, up
to one-third of patients develop unacceptable toxicity
[7]. Consequently, a significant number of marketed
drugs have poor risk–benefit ratios for diverse patient
populations. This occurrence has been termed the
‘efficacy–effectiveness gap’ and is, ultimately, a result
of variability in patient–drug responses [8].

The observation that patients are neither equally
responsive to beneficial drug effects nor equally suscep-
tible to adverse events motivates the call for a paradigm
shift from population-level to patient-specific medicine
[6,8]. To address this directive, two cooperative aims
have been proposed, (i) determine the detailed molecu-
lar mechanisms of drug action and (ii) understand the
This journal is q 2012 The Royal Society
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effect of genetic variants on patient–drug response. The
former aim is the focus of the field of pharmacody-
namics (reviewed in [9]), and the latter the focus of
pharmacogenetics (reviewed in [10,11]). At the intersec-
tion lies the challenge of understanding how genetic
differences between individuals can translate into struc-
tural alterations in protein drug targets and ultimately
into variable patient–drug response.

The genetic basis for inter-individual drug response
variability has been studied extensively over the last
50 years [12]. While there are numerous behavioural
and environmental factors that contribute to patient–
drug response, genetic factors also often have a key, if
not a dominant, role [7]. Specifically, genetic variants
affect gene expression, mRNA processing and stability,
and protein structure. Each of these variations can have
functionally significant consequences for drug response
[12]. Moreover, genetic polymorphisms are observed in
all of the principle effectors of therapeutic response,
drug transporters, drug-metabolizing enzymes and
drug targets. Gaining a detailed understanding of the
underlying mechanisms of phenotypic variability in
drug response at the protein level is a key factor
in the establishment of personalized medicine [13].

Traditionally, the roles of genetic variations in proteins
were investigated using sequence analysis tools to predict
the tolerability of a given amino acid substitution and its
probable effect on protein function [14]. Yet, interpreting
the effect of a mutation within the three-dimensional con-
text of the protein structure offers more information [15].
Analysis of three-dimensional structures can provide valu-
able insight into the mechanisms of drug–target
interaction and the relationships between mutations and
differential therapeutic responses [16]. Such detailed
structural analysis of protein–drug interactions was not
always feasible in the past, but structural genomics
initiatives have resulted in an explosion of high-resolution
structures of known and potential drug target proteins.

In this review, we discuss the relationship between
structural protein variations and differences in patient–
drug response. The scope is not limited to, but is strongly
focused on, the effect ofmutations on structures of primary
drug targets of human origin. We begin with an overview
of protein targets and common mechanisms of drug
interactions. Next, we describe the impact of structural
mutations on drug response. Finally, tools and databases
developed for analysing protein structures and protein–
drug interactions are presented and their potential
applications for gaining insight into protein structural
variants displaying altered drug response are discussed.
2. SMALL-MOLECULE DRUGS AND THEIR
PROTEIN TARGETS

2.1. Properties of small-molecule drugs

Structures of therapeutic agents are highly diverse and
range from small-molecule compounds, to antibodies, to
whole cells [17]. This structural diversity allows them
to specifically interact with and modulate the function
of their diverse targets. Although therapeutic biologics
have seen increased development during the past
decade, small-molecule drugs still account for over
J. R. Soc. Interface (2012)
two-thirds of new molecular entities approved by the
US FDA [18]. Thus, this review focuses on small mol-
ecular therapeutics (typically 200–550 Da [19]) and
the structural mutations in their protein targets that
can lead to altered drug response. Yet, it is important
to note that such mutations can affect the behaviour
of all therapeutic agent classes.

Small-molecule drugs must meet several criteria,
including having reasonable solubility and stability
levels in aqueous media, appropriate structural and
physicochemical features to specifically interact with
their targets, and satisfactory pharmacokinetic profiles
for clinical use (for recent reviews see [20–22]). Guide-
lines for evaluating the drug-likeness of a molecule
(for example, Lipinski’s Rule of Five [23] and its deriva-
tives [24]) have been widely adopted to aid the
development process. However, applying these guide-
lines warrants caution, as the guidelines assume that
the target of interest requires a compound whose mol-
ecular properties are similar to those of the average
drug. In addition, applying drug-like screening criteria
to compounds in early stages of development can be dis-
advantageous because the molecular properties of lead
compounds undergo extensive optimization before clini-
cal introduction. On average, the optimization process
increases a compound’s molecular weight and complex-
ity [25]; thus, an initial compound with drug-like
properties would probably lie outside of the desired
physicochemical space after development is complete.

Frequently, the universal application of drug-likeness
guidelines without regard for the structure of the intended
protein target is detrimental. Consideration of the three-
dimensional target structure can provide a more accurate
understanding of a drug’s requisite properties [26,27]. In
short, fine-tuning the molecular properties of drugs to
the structures of their protein targets promotes binding
interactions of high affinity and specificity.
2.2. Three-dimensional structures of
protein targets

Ideal therapeutic targets share several features, involve-
ment in a biologically relevant pathway, functional
and structural characterization, and druggability [28].
A druggable protein is one possessing structural
characteristics that favour interactions with drug-like
compounds and whose function can be modulated
through such interactions. Inference of druggability his-
torically relied on sequence homology of the protein of
interest to known drug targets [29]. However, protein
families lacking homology to drug targets have yielded
novel targets and not all members of a protein family
are equally druggable [30].

Instead, three-dimensional structures can provide
information more relevant to protein druggability. In a
seminal paper, Cheng et al. [30] applied knowledge
derived from biophysical principles and protein structure
to accurately predict protein druggability and drug bind-
ing affinities. Several subsequent studies then extracted
structural and physicochemical descriptors associated
with druggability from known protein–ligand complex
structures [31–33]. A recent comparison of two protein
structure datasets, one comprising drug targets and the

http://rsif.royalsocietypublishing.org/


Table 1. Properties of druggable protein pockets.

pocket property observed value

depth 7–11 Å [33]
volume 500–1000 Å3 [33,37]
surface area 300–600 Å2 [30,38,39]
compactness low radius of curvature [30];

volume : surface area ratio of
approximately 0.4 [40]

surface
complexity

rough [40]

hydrophobicity 20–40% polar surface area [41]
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other of non-drug targets, revealed drug targets to be
more hydrophobic, have lower isoelectric values, be com-
posed of more amino acids and have a higher frequency of
beta-sheet secondary structure compared with other pro-
teins [28]. Similarly, some protein tertiary structures are
enriched among druggable proteins. Structural classifi-
cation of drug targets from the Protein Data Bank
(PDB [34]) using the Structural Classification of Proteins
(SCOP) database [35] showed that the 10 most
commonly observed folds are, nuclear receptor ligand-
binding domain, ferredoxin-like, C-terminal domain,
acid protease, NAD(P)-binding Rossmann-fold domain,
TIM beta/alpha-barrel, prealbumin-like, dihydrofolate
reductase-like, alpha/beta-hydrolase, and DNA/RNA
polymerase.

A nearly ubiquitous structural feature of drug tar-
gets is the presence of a solvent accessible cavity or
binding pocket. Analysis of 5600 protein–ligand struc-
tures from the PDB revealed 95 per cent of binding
sites to be within one of the three largest pockets [36].
Yet, the presence of a binding pocket does not, in
itself, render a protein druggable. Rather, specific
cavity properties strongly affect protein druggability
(summarized in table 1).

Some proteins of great therapeutic interest (i.e.
protein–protein interfaces) lack large binding pockets
and/or other structural characteristics associated with
druggability [20]. To expand therapeutic protein space
to these intractable targets, much effort in the past
decade has focused on their structural characterization
[37]. The resulting structural insights led to modified
drug development approaches, such as expanding the
chemical space of drug compound libraries [20,42,43].
The most notable small-molecule success in targeting
protein–protein interfaces is the phase II clinical trial
drug, ABT-263 [44].

2.3. Classes of protein targets

Considering the structural druggability requirements
discussed above, there is surprising diversity among
therapeutically targeted proteins. Protein targets of
recently approved drugs are found in diverse locations
throughout the body; many are secreted (e.g. plasmino-
gen) or transmembrane (e.g. P2Y receptor) proteins,
while others are found in specific subcellular locations
(e.g. mTORC1). Likewise, their biological functions
are varied and include, transmitting signals from the
extracellular to the intracellular environment (e.g.
J. R. Soc. Interface (2012)
thrombopoietin receptor), catalysing biochemical reac-
tions (e.g. dipeptidyl peptidase-4), controlling ion flux
across cellular membranes (e.g. KCNQ/Kv7 potassium
channel), and directly regulating gene expression (e.g.
SERM). In addition to modulating the endogenous
functions of wild-type proteins, pharmaceutical efforts
have also targeted protein variants (e.g. Bcr-Abl
kinase), the altered structures of which confer aberrant
biological functions.

Although therapeutic targets are diverse, thera-
peutic coverage of the human proteome is sparse.
There are an estimated 22 000 protein-coding genes in
the human genome [45], of which 6000–8000 are probably
druggable [46,47]. Currently marketed drugs modulate
the functions of only a small number of human proteins,
the majority of which are targeted to achieve antihyper-
tensive, antineoplastic or anti-inflammatory effects [1].
The roughly 1400 small-molecule drugs marketed in
the US [48] collectively target fewer than 450 unique
human proteins [1,46]. Similarly, a recent analysis of
823 179 unique bioactive agents found they correspond
to a mere 1654 human protein targets, with a median
compound-to-target ratio of 41: 1 [49].

Disparate coverage of potential targets persists even
in the genomics era; of the 183 small-molecule drugs
approved from 1999 to 2008, only 75 are first-in-class
with novel molecular mechanisms of action [18]. Recep-
tors comprise the largest class of drug targets (44% of
targets), followed by enzymes (27% of targets) and
transporter proteins (15% of targets) [1]. Moreover,
half of current small-molecule therapeutics dispropor-
tionately target five protein families, rhodopsin-like
GPCRs, voltage-gated ion channels, ligand-gated ion
channels and kinases [20,50].
3. MECHANISMS OF DRUG ACTIVITY

3.1. Molecular recognition between small
molecules and proteins

Binding events, like the formation of protein–drug
complexes, are governed by enthalpic and entropic contri-
butions. The former stem from stabilizing interactions
with the formation of hydrogen bonds and salt bridges,
and the latter involve penalties from the loss of confor-
mational freedom of the protein and drug. The balance
between enthalpic and entropic contributions determine
the free energy of the interaction and, thereby, the favour-
ability of the binding event at equilibrium. The enthalpy
of molecular recognition between a protein and a small
molecule depends on two key components, shape comple-
mentarity and physicochemical complementarity. Shape
complementarity permits the protein and small molecule
to achieve sufficient proximity and contact surface area to
form stabilizing interactions, while physicochemical com-
plementarity determines the nature of these interactions.
Amino acid mutations occurring in target proteins have
the ability to disrupt both shape complementarity as
well as physicochemical compatibility. Their impact on
drug binding, and therefore drug response, depends
on the nature of the mutation and its three-dimensional
structural context, as discussed in §4.

http://rsif.royalsocietypublishing.org/
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3.1.1. Models of molecular recognition
Molecular complementarity was first thought of as a lock-
and-key fit, where the small molecule (key) possessed
perfect shape and physicochemical complementarity to
the protein (lock). However, the predominance of struc-
tural rearrangements, both minor and major [51], upon
ligand binding are better explained by two recently
adopted models—induced fit and conformational
selection [52,53].

The induced fit model attributes protein structural
changes to the binding event of the ligand. The recently
solved complex of human neutrophil elastase (HNE)
with a dihydropyrimidone inhibitor exemplifies an
induced fit binding mechanism, since protein structural
rearrangements near the inhibitor differ from the
conformations of both ligand-free HNE and other
HNE-inhibitor complexes [54].

Conversely, in the conformational selection theory
the ligand selects the most complementary confor-
mation from an ensemble of equilibrium structures.
This mode of interaction has been implicated in the
binding selectivity of imatinib to tyrosine kinases (see
§4.3.1.1) [55]. Molecular dynamics (MD) studies reveal
that kinases with high imatinib affinity spend more
time in conformations compatible with drug binding
compared with kinases with low imatinib affinity.

Yet other studies suggest that real interactions
reflect a mixture of the two binding models [55–57].
For example, recent in silico work demonstrated that,
contrary to previous assumptions, ligand binding to
the lysine-, arginine-, ornithine-binding protein pro-
ceeds through two stages, initial complex formation
by conformational selection followed by ligand-induced
transition to the observed bound state [57].

Differences between unbound (apo state) and bound
(holo state) protein structures add a transient dimension
to molecular complementarity. This has important impli-
cations for the use of structural data in detecting and
understanding protein–drug interactions. Namely, avail-
able protein structures may not display a conformation
compatible with small-molecule binding. These non-
binding structures can result from protein structural
preferences or random chance and crystallization arte-
facts [58]. Caution must therefore be used when relying
on structural data to assess whether a protein binds
a drug and the mode of binding. MD simulation
(see §5.5) is a useful approach for generating protein
structural ensembles and capturing alternative confor-
mations that may be relevant for protein function
or small-molecule binding [59,60]. Protein dynamics
information enhances structure-based binding site pre-
diction methods and reduces their dependence on
experimentally determined target protein structures.
3.1.2. Shape complementarity
Shape complementarity refers to the geometric fit, or
steric fitness, of a small molecule and its surrounding
protein environment. The importance of shape comple-
mentarity in protein–drug interactions is discussed in a
recent review by Kortagere et al. [61]. Numerous
protein–ligand complexes in the PDB depicting close
intermolecular contacts between small molecules and
J. R. Soc. Interface (2012)
proteins illustrate the importance of shape complemen-
tarity for binding. For example, the recently solved
complex of the first bromodomain of human Brd4, a tran-
scription factor complex protein and therapeutic target of
interest in cancer, with a highly potent and specific
inhibitor depicts excellent shape complementarity
(figure 1a and b) [62].

However, high shape complementarity is not always
a requisite for drug binding and is often incomplete or
imperfect. This is evident from the crystal structure of
the human Cdc34 ubiquitin-conjugating enzyme in
complex with a novel allosteric inhibitor showing that
the ligand does not fully interact with the protein
target [63]. The shape complementarity of this complex
is both imperfect, since water-mediated binding inter-
actions introduce unoccupied space between binding
partners (figure 1c), and incomplete, as there is a
solvent-exposed carboxylic acid group on the ligand
(figure 1d).

Shape complementarity dictates whether a ligand
is sufficiently close to a protein to form favourable
interactions and is therefore a critical determinant of
binding. As such, shape complementarity has been
applied in virtual screening of drug discovery approa-
ches [64]. Yet, it is important to note that geometric
compatibility does not always indicate physicochemi-
cal compatibility. Thus, in the following section we
describe the role of physicochemical complementarity
in molecular recognition.

Numerous shape-matching technologies and protein
pocket predictors can be used to gain insights into
protein–drug interactions (see §5.3). Ebalunode and
Zheng published a recent review on shape complementary
methods [65].
3.1.3. Physicochemical complementarity
Physicochemical complementarity refers to non-
covalent interactions holding proteins and ligands in a
complex. These interactions can involve long-range
ionic bonds or weaker short-range interactions includ-
ing hydrogen bonds, van der Waals forces and
hydrophobic packing. Electrostatic complementarity,
accounting for both ionic and electrostatic interactions,
is one of the most important forces governing protein–
ligand complex formation, affecting binding affinity
as well as the rate of protein–ligand association (revie-
wed in [66]). For example, in pancreatic endoplasmic
reticulum kinase, electrostatic complementarity to an
aspartate in the binding site strongly influences inhibitor
affinity, with a lack of complementarity translating to
weaker affinity [67]. Likewise, electrostatic steering of a
small molecule into the proper orientation for binding
enhances complex formation. Protein–drug interactions
are further affected by pH owing to the titratable
groups (weak acid or weak base) found in many drugs
that alter the ionization state of the molecule.

As previously discussed in §2.1, many drugs are
hydrophobic in nature and have a partition coefficient
greater than one, indicating a preference for solubilizing
into octanol versus water [23]. Such compounds are
energetically unfavourable in the aqueous compart-
ments of the body, thereby producing a driving force

http://rsif.royalsocietypublishing.org/


(a)

(c)

(b)
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Figure 1. Shape complementarity between small molecules and their protein targets. The structure of Brd4 (grey cartoon) with
an inhibitor (sticks) shows excellent shape complementarity when viewed looking (a) into and (b) perpendicular to the binding
pocket (grey mesh). In contrast, Cdc34 (grey cartoon) bound to an inhibitor (sticks) has imperfect and incomplete shape com-
plementarity, as depicted looking into (c) and perpendicular to (d) the binding pocket (grey mesh). Water molecules represented
as red and white spheres. (Brd4, PDB 3MXF [62]; Cdc34, PDB 3RZ3 [63].) (Online version in colour.)
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for protein binding. This tendency is responsible for
much of the non-specific interactions of hydrophobic
drugs. Non-specific interactions are therefore primarily
driven by physicochemical compatibility between the
compound and protein.

While the effects of both the hydrophobic effect and
hydrogen bonds on protein–ligand binding events are
well documented, the molecular underpinnings of
these phenomena remain the focus of investigation. Of
particular importance to understanding protein–
ligand interactions, the mechanism of hydrophobicity
[68] and the definition of hydrogen bonds [69] have
been recently updated.
3.2. Modes of drug binding

Drugs and other chemical compounds interact with pro-
teins in diverse ways. The nature of the interaction may
be reversible (e.g. the binding of a competitive antagon-
ist) or irreversible (e.g. the covalent modification of a
protein from a suicide inhibitor). The location at
which drugs interact with proteins can also vary.
Drug binding at the protein’s orthosteric site or allo-
steric site has different implications (figure 2), which
we discuss further in the following sections.
J. R. Soc. Interface (2012)
3.2.1. Orthosteric binding sites
Classical drug development approaches predominantly
focused on targeting the protein orthosteric site (also
known as the active site for enzymes). Endogenous
ligands bind at the orthosteric site to elicit a biological
response. Thus, a popular mechanism of drug action is
to occupy the orthosteric site, thereby blocking
endogenous ligand binding and modulating protein
function (figure 2).

As we noted previously, protein kinases constitute a
large protein family of strong pharmaceutical interest.
There are two classes of kinase inhibitors. Type 1
inhibitors exert their effects by blocking adenosine
triphosphate (ATP) binding to the catalytic kinase
domain. Type 2 inhibitors also bind in the active site,
but block kinase activity by stabilizing the inactive
protein conformation (see §4.3.2). Imatinib, a popular
drug used for treating chronic myelogenous leukaemia,
is a type 2 inhibitor that binds to the deregulated tyro-
sine kinase, Bcr-Abl, stabilizing it in an inactive
conformation [71].

Because the sequence and structure of active sites
are often highly conserved among protein families,
cross-reactivity is a significant problem for drugs target-
ing orthosteric sites. For example, many kinase
inhibitors have low selectivity profiles and bind to a

http://rsif.royalsocietypublishing.org/
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Figure 2. Drug binding modes. Orthosteric and allosteric
ligands bind topographically distinct protein sites to posi-
tively or negatively affect target protein function. (a)
Orthosteric full, partial or inverse agonism; (b) positive or
negative affinity modulation; (c) positive or negative efficacy
modulation; (d) allosteric full, partial or inverse agonism;
(e) competitive drug binding. Target protein (blue rounded
rectangle), endogenous ligand (purple square), orthosteric
drug (orange hexagon), and allosteric drug (red circle).
Adapted with permission from [70]. (Online version in colour.)
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variety of family members, as illustrated by the promis-
cuity of numerous kinase inhibitors for human kinases
[72]. Such a broad binding profile may be beneficial
for polypharmacology, where inactivation of multiple
pathways involved in disease leads to better treatment
outcome [73]. However, multi-targeting can incur
more side effects owing to drug promiscuity. Thus,
there exists a trade-off between drug specificity and effi-
cacy, with the desired balance varying from disease to
disease. Tools for selecting compounds with improved
selectivity [74] or multi-target binding [75] are both
under focused development.
3.2.2. Allosteric binding sites
Allosteric drugs interact with their protein targets at
sites spatially distinct from the protein orthosteric site
(figure 2). The binding event induces protein confor-
mational rearrangements that lead to altered activity.
Allosteric modulators produce a change in affinity or
efficacy for the endogenous ligand, while allosteric ago-
nists or antagonists alter the activation state of the
protein itself [76].

Targeting protein allosteric sites has received signi-
ficant attention recently because of the benefits of
allosteric modulation versus orthosteric modulation
[70,77]. First, in the event of drug overdose, allosteric
drugs are likely to pose less heath risk because their
effects saturate once full occupancy of targeted sites is
reached. Next, allosteric compounds are less likely
J. R. Soc. Interface (2012)
than orthosteric molecules to desensitize their targets
and therefore have decreased tendency for acquired
drug tolerance [78,79]. Most importantly, allosteric
drugs have enabled highly selective targeting of protein
family subtypes. In contrast to orthosteric sites, which
are generally highly conserved, allosteric sites have
much greater sequence and structural diversity. How-
ever, protein allosteric sites are often challenging to
locate, characterize and target [80].

The shift towards allosteric therapeutics is evident in
the rhodopsin-like GPCR protein family. Numerous
drugs, including atenolol (an anti-hypertension drug)
and salbutamol (an anti-asthma drug) bind to GPCR
orthosteric sites in order to alter the receptor activity.
However, like protein kinases, the orthosteric sites of
GPCRs are highly conserved [81], leading to problems
with off-target activity and thus motivating a move
towards development of allosteric compounds to
enable targeting of specific GPCR subtypes [70].
GPCR allosteric sites are more diverse, offering more
degrees of chemical freedom in developing allosteric
drugs compared with orthosteric drugs [82]. Cinacalcet
is the first example of an FDA-approved allosteric
GPCR modulator, and functions by increasing the sen-
sitivity of its receptor to calcium in the treatment of
hyperparathyroidism [70].
4. PROTEIN VARIANTS WITH
ALTERED THREE-DIMENSIONAL
STRUCTURES AND DRUG RESPONSES

Based on genome sequencing of individuals from differ-
ent populations, it is estimated that each person’s
proteome contains roughly 10 000–11 000 mutations
compared to the reference proteome [85]. A subset of
these mutations (those resulting in premature stop
codons, splice-site disruptions, and frame shifts) prob-
ably has severe functional consequences, yielding
approximately 250–300 loss-of-function protein var-
iants per individual [85]. However, for the great
majority of mutations, it is difficult to predict a priori
what their effect will be on the resultant protein’s struc-
ture and function.

4.1. Classes of mutations

Single nucleotide polymorphisms (SNPs) fall either
within non-coding (including promoter, operator,
enhancer and transcription factor binding regions) or
coding regions of DNA. Because of redundancy in the
genetic code, some mutations within coding regions
(synonymous mutations) do not change the encoded
protein sequence. On the other hand, non-synonymous
SNPs produce either polypeptide sequences that have
an amino acid substitution (missense mutations) or
are truncated (nonsense mutations).

Phenotypes resulting from mutations are generally
thought of in a protein structural context, where an
amino acid substitution or deletion leads to altered
protein structure and function. However, some mutations
exert their effects via changes to the mRNA that can lead
to altered mRNA splicing, folding or stability, and there-
fore altered protein product [86]. Here we focus our

http://rsif.royalsocietypublishing.org/
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discussion specifically on the structural effects of protein
missense mutations, since over half of all known human
disease-associated mutations are missense SNPs [87].

Missense mutations can drastically alter protein struc-
ture and function, resulting in inter-patient variability in
drug response. There are varied structural mechanisms
through which missense mutations exert their effects,
such as altering the physicochemical or geometric proper-
ties of a protein binding pocket, modifying structure
dynamics (i.e. conferring or restricting flexibility) or
disrupting folding and stability. A missense mutation
occurring in the target protein may have a pharmaco-
dynamic effect, while one occurring in a protein
involved in drug absorption, distribution, metabolism
or excretion may alter drug pharmacokinetics. Protein
variants of the former group often impact response to a
specific drug class while those of the latter group often
affect a diverse array of drug classes.

In the following sections, we describe the mechan-
isms by which missense mutations alter the three-
dimensional protein structure and thereby change
drug pharmacodynamics and/or pharmacokinetics.
Elucidating the structural underpinning of these effects
is important for understanding the mechanisms of drug
response and for predicting the clinical implication of
novel genetic variants.
4.2. Effects of missense mutations on
protein structure

Early approaches for studying the effect of genetic vari-
ation on protein function were sequence-based. They
relied on the hypothesis that functionally relevant resi-
dues would exhibit higher sequence conservation, as
mutation would probably be deleterious [88]. Accord-
ingly, several sequence-based approaches harnessing
evolutionary conservation information were developed
to predict deleterious missense SNPs [89–94].

Although amino acid conservation is a useful metric
for identifying functionally important residues, its
scope is inherently limited to one-dimensional sequence
space. It is much more informative to consider the effect
of a mutation within the three-dimensional context of
the protein structure. Three-dimensional context
of the mutation can reveal the nature of the local
environment (solvent-exposed or buried), the proximal
interacting residues that are not necessarily contiguous
in primary sequence, and the relative position of the
mutation to binding or active sites. Furthermore,
while SNPs occurring in highly conserved functional
sites may directly disrupt protein activity, it does not
follow that SNPs in regions under little or no selective
pressure are tolerable. Such mutations still have the
potential to affect protein folding, dynamics, stability
and activity. These effects manifest through changes
to the protein structure; thus to accurately predict the
effect of a missense mutation, it is necessary to study
its structural context.

Recent algorithms for predicting the effects of
mutations on protein function [15,95–97] and stability
[98–101] are beginning to include protein structure as
an input feature. However, high-resolution three-
dimensional structures are available only for a subset of
J. R. Soc. Interface (2012)
known proteins. When an experimentally determined
protein structure is unavailable, structure prediction tech-
niques (see §5.2) can provide a model from which to
extract structural context information for a mutation.

4.3. Pharmacodynamic effects of missense
mutations

Structural variants of target proteinswithdifferential drug
response compared with their wild-type counterparts sep-
arate into two broad categories, some have mutations
affecting the binding site that directly alter drug inter-
action, while others have mutations distal to the binding
region that give rise to long-range structural perturba-
tions or altered protein conformations. Regardless of
the mechanism responsible for variable drug outcome,
detailed knowledge of the three-dimensional target protein
structure is critical for understanding drug–target inter-
actions. Furthermore, once the structures of disease-
relevant variants are elucidated, they can be specifically
targeted by novel therapeutic strategies for improved out-
come. In the following case studies, we briefly discuss the
consequences of missense mutations on three-dimensional
target protein structures and drug response.

4.3.1. Protein variants with binding site mutations
4.3.1.1. Missense mutations altering drug binding:
kinase ‘gatekeeper’ residue substitution. As previously
discussed, kinases are important cellular signalling pro-
teins whose aberrant expression and activation is widely
implicated in cancer. Kinases are therefore among the
most pursued classes of drug targets, with several
ATP-competitive inhibitors approved for clinical use.
However, the efficacy of these agents is often limited
by the subsequent emergence of drug resistance [102].
Such resistance often develops through the acquisition
of mutations that abrogate inhibitor binding. The
most widely observed of these mutations occur at the
‘gatekeeper’ residue, whose sidechain bulk controls
accessibility of the hydrophobic ATP binding pocket
[102]. Interestingly, kinase gatekeeper mutations
confer drug resistance through two distinct structural
mechanisms, (i) sterically blocking binding of the drug
to the active site and (ii) decreasing the apparent
drug potency by increasing the binding site affinity
for ATP.

Patients with the Bcr-Abl oncoprotein frequently
acquire mutations in the Abl kinase domain after treat-
ment with ATP-competitive inhibitors, resulting in
drug resistance. In particular, the T315I Abl gatekeeper
mutation accounts for approximately 20 per cent of
clinically observed drug resistance to imatinib, the cur-
rent gold-standard treatment for Bcr-Abl positive
leukaemias [103]. Examination of the crystal structure
of the Abl T315I mutant compared with that of the
wild-type kinase revealed that gatekeeper residue repla-
cement with isoleucine sterically blocks binding of
imatinib in the active site, resulting in drug resistance
[104] (figure 3). Structural knowledge of the Abl gate-
keeper variant has brought about the development of
inhibitors that target alternate Abl kinase druggable
pockets or are capable of accommodating the T315I
mutation [106–108].
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Figure 3. Mutation of kinase gatekeeper residue confers drug resistance. (a) Overlay of wild-type Abl kinase (light grey cartoon)
with bound imatinib (sticks) and T315I variant (dark grey cartoon) shows equivalent global structures. (b) Wild-type Abl bind-
ing pocket (yellow mesh) has a threonine gatekeeper residue (grey stick and semitransparent surface) bound to imatinib (yellow
sticks). (c) Wild-type Abl binding pocket (yellow mesh) and imatinib (yellow sticks) overlaid on the T315I variant structure
shows an inability of the mutant to accommodate the drug owing to protrusion of the isoleucine gatekeeper residue (red stick
and semitransparent surface) that sterically prevents drug binding. (Wild-type Abl kinase, PDB 2HYY [105]; Abl kinase
T315I, PDB 2Z60 [104].) (Online version in colour.)
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Likewise, the epidermal growth factor receptor
(EGFR) tyrosine kinase gatekeeper mutation, T790M,
is also associated with clinical drug resistance. This
mutation typically arises in patients possessing the
oncogenic L858R mutation, accounting for approxi-
mately half of all clinically observed resistance to
gefitinib and erlotinib [109,110]. Prior to attaining the
crystal structure of the EGFR T790M/L858R variant,
the gatekeeper mutation was proposed to sterically
block binding of inhibitors in the active site [111].
More recently, Yun and colleagues solved the crystal
structure of the variant and demonstrated that EGFR
T790M/L858R is structurally capable of accommodat-
ing inhibitors in its kinase active site [112]. In fact,
the observed drug resistance of EGFR T790M mutants
is owing to increased binding affinity for ATP. Novel
inhibitors specifically targeting the EGFR T790M
variant are currently in clinical trials [113].
4.3.1.2. Missense mutations altering drug effect: andro-
gen receptor binding pocket expansion. The androgen
receptor (AR) is a nuclear hormone receptor essential
to normal male development and the maintenance of
male-specific organs. Altered AR signalling is impli-
cated in multiple malignancies, including prostate
cancer. While the incidence of mutations in the AR
ligand-binding domain is low in primary tumours, it
increases over the course of treatment with antiandro-
gens such as bicalutamide and flutamide [114]. Of
particular concern are mutations in the AR ligand-
binding domain that convert these therapeutic antag-
onists to partial agonists [115].

One such ligand-binding domain mutation observed
in AR-dependent malignancies is T877A. Sack and col-
leagues first reported the crystal structure of the AR
T877A variant and found that the alanine substitution
increases the binding pocket volume, allowing bulkier
ligands like the antiandrogens to bind to and activate
the receptor [116]. Further structural investigations
by Bohl et al. [117–119] showed that the AR T877A
J. R. Soc. Interface (2012)
mutation (figure 4a and b) as well as a similar
W741L mutation (figure 4c and d) expand the ligand-
binding pocket and alter its physicochemical properties,
leading to the conversion of potent antagonist drugs
to agonists. Using the crystal structures of AR mutants
with expanded binding pockets, drug discovery
via structure-based approaches have led to second-
generation antiandrogens that are currently undergoing
clinical trials [115,122].

4.3.2. Protein variants with non-binding site mutations
4.3.2.1. Missense mutations altering protein conforma-
tion: KIT kinase shifted conformational equilibrium.
Approximately 85 per cent of patients with gastro-
intestinal stromal tumours have activating mutations
in KIT receptor tyrosine kinase [123]. Imatinib is an
effective first-line treatment, but half of patients on
this therapy acquire further KIT mutations conferring
drug resistance within two years [124]. A portion of
KIT variants with mutations at D816, located in the
activation loop of the catalytic domain, are also resist-
ant to second-line treatment with sunitinib [125].

Structural studies by Mol et al. revealed that KIT
populates a structural ensemble ranging from an inactive
autoinhibited state to an activated conformation
[126,127]. Recently, Gajiwala and colleagues found that
the D816H/V mutations both shift the conformational
equilibrium of KIT variants towards the active form
[128]. Yet, both imatinib and sunitinib bind exclusively
to the inactive conformation which is less populated in
KIT D816 variants, resulting in abrogated clinical effi-
cacy. Similar mechanisms of resistance have been
reported with other receptor tyrosine kinases, motivating
drug development efforts focused specifically on target-
ing kinases in the active conformation [129,130].

4.3.2.2. Missense mutations affecting protein stability:
p53 decreased thermal stability. Inactivation of the
p53 tumour suppressor is an almost universal feature
of human cancers [131]. Typically, p53 tumour
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Figure 4. Expansion of AR binding pocket converts antagonist drugs to agonists. (a) Overlay of wild-type AR (light grey cartoon)
with bound cyproterone (sticks) and T877A variant (dark grey cartoon) depicts their globally similar structures. (b) Expanded
binding pocket of AR T877A variant (red mesh) compared with wild-type (yellow mesh) better accommodates the bulky cypro-
terone (yellow sticks). (c) Overlay of wild-type AR (light grey cartoon) with bound R-bicalutamide (yellow sticks) and W741L
variant (dark grey cartoon) depicts their globally similar structures. (d) Expanded binding pocket of AR W741L variant (red
mesh) compared with wild-type (yellow mesh) better accommodates the bulky R-bicalutamide drug (yellow sticks). Substituted
sidechains (red sticks and semi-transparent surfaces) compared with wild-type (grey sticks and semi-transparent surfaces) are
highlighted. Binding pockets generated using HOLLOW [120]. (Wild-type AR, PDB 2AM9 [121]; AR T877A, PDB 2OZ7
[119]; AR W741L, PDB 1Z95 [117].) (Online version in colour.)
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suppressor functions as a critical barrier to tumour
development by binding to DNA and regulating cell
cycle progression and apoptosis [132]. Hence, restor-
ation of p53 activity has been the focus of intensive
cancer therapeutic efforts [131]. p53 has an extremely
limited half-life owing to both its low thermal stability
(Tm � 44oC) and targeted ubiquitination by HDM2, its
negative regulator [132,133]. Blocking the p53 binding
site on HDM2 is sufficient to reactivate the p53
response in cells and induce rapid tumour regression
[131,132]. The crystal structure of p53 bound to the
mouse homologue of HDM2 (MDM2) showed the pres-
ence of a deep druggable pocket at the protein–protein
interface and inspired the structure-based develop-
ment of numerous small-molecule HDM2 inhibitors
[43,131,132,134]. Some of these HDM2 inhibitors (e.g.
Nutlin-3) have shown promise in preclinical studies
and are currently in early clinical trials [135–138].

While HDM2 inhibitors are promising therapeutics
for patients with wild-type p53, approximately 50 per
cent of human cancers have mutations in the p53
DNA-binding domain that make HDM2-targeted drug
J. R. Soc. Interface (2012)
treatment ineffective [139,140]. For example, crystallo-
graphic studies on p53 Y220C, a common oncogenic
variant, revealed that this surface mutation connects
two pre-existing clefts to form an extended solvent
accessible crevice (figure 5), disrupts packing of the
hydrophobic core, and drastically decreases thermodyn-
amic stability [139]. As a result, p53 Y220C is too
unstable to function at physiological temperature and
is rapidly depleted by denaturation [142]. The extended
cleft has been the focus of structure-based drug discov-
ery efforts aimed at rescuing unstable p53 Y220C
mutants [133,143].
4.4. Pharmacokinetic effects of
missense mutations

In general, all drugs are slightly promiscuous and the
effect they elicit depends on their interaction with
numerous proteins throughout the body, not just the
target protein. Specifically, the proteins involved
in drug pharmacokinetics have an important role in
determining clinical outcome. While the focus of this
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Figure 5. Mutation of p53 surface residue decreases protein stability. (a) Overlay of wild-type p53 (light grey) and Y220C variant
(dark grey) shows high structural similarity. (b) Mutation of Tyr220 (grey stick and semitransparent surface) to Cys (red stick
and semitransparent surface) creates a cleft on the surface of mutant p53 (mesh) that destabilizes the protein structure.
(Wild-type p53, PDB 1UOL [141]; p53 Y220C, PDB 2J1X [139].) (Online version in colour.)
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review is primarily on understanding the mechanism by
which structural perturbations in the primary drug
target can change drug response, the same analysis
can be used to gain insight into mutations in proteins
involved in drug absorption, distribution, metabolism
or excretion.

Cytochrome P450 (CYP) enzymes are responsible
for the oxidative metabolism of environmental com-
pounds, pollutants and drugs [144]. Their essential
role in drug metabolism makes CYP enzymes of great
pharmacokinetic importance. A large number of CYP
variants linked to altered drug pharmacokinetics have
been reported for several CYP family members, includ-
ing CYP1A2 [145], CYP2B6 [146], CYP2C9 [147],
CYP2C19 [145], CYP2D6 [148], CYP2J2 [149] and
CYP3A5 [150]. As a family, CYP enzymes bind a
remarkably broad range of ligands. Recent structural
studies show that CYP structural flexibility is the
major determinant of ligand binding promiscuity
[151,152]. Thus, missense mutations that are peripheral
to the CYP active site can exert long-range effects that
disrupt the enzyme’s flexibility or binding pocket struc-
ture, resulting in altered drug binding and metabolism
[153,154].

The CYP2C9 isoform metabolizes more than 100 drugs
in current clinical use [155]. There are large interindividual
variations in CYP2C9 activity and, thus, in clinical
response to therapeutics metabolized by the enzyme.
Specifically, 32 marketed drugs exhibit CYP2C9
variant-dependent metabolism [155]. CYP2C9*3, a
common variant carrying an I359L mutation, is correlated
with decreased metabolism and clearance for multiple
drugs including the anticoagulant warfarin [156]. Williams
et al. first reported the crystal structure of apo-CYP2C9
and CYP2C9 in complex with warfarin [144]. Building on
this crystallographic data, Sano et al. [157] computation-
ally investigated the structural mechanisms underlying
decreased CYP2C9*3 warfarin metabolism. Although
the I359L mutation does not directly hinder drug binding,
this substitution introduces long-range structural pertur-
bations that result in expansion of the binding pocket
volume and increased fluctuations in warfarin-coordinat-
ing residues (figure 6). These structural alterations
J. R. Soc. Interface (2012)
collectively cause warfarin to bind in a region of the bind-
ing pocket that is more removed from the active site,
leading to decreased enzymatic activity [157]. To account
for this altered metabolism, a number of pharmacogenetic
algorithms predict warfarin dosing based on patient
CYP2C9 genotypes to achieve maximum efficacies with
minimum toxicities [158–162].
5. COMPUTATIONAL TOOLS

Structure-based computational methods offer molecu-
lar insights into drug–protein relationships and the
mechanisms by which missense mutations elicit differen-
tial drug responses. Below we discuss five major classes
of bioinformatics tools, three-dimensional structure visu-
alization, protein structure prediction, binding site
detection and comparison, ligand docking and scoring,
and MD.

Although none of these tools were specifically devel-
oped for studying the structural effects of protein
sequence mutations, they can be readily applied for
this purpose [163]. For example, protein structure
prediction tools have been used to model protein var-
iants given a homologous protein structure [164,165].
Mutations mapped to the protein structure permit
analysis of their structural and/or functional conse-
quences using binding site prediction tools [166,167].
Ligand docking studies on protein structures with
varied binding site residues have elucidated protein–
ligand binding mechanisms [168] and selectivity [169].
In addition, simulation of protein MD and flexibility
have provided insight into the effect of mutations on
ligand binding [170,171]. Collectively, these bioinfor-
matics tools offer great potential for understanding
high-resolution structural details of protein variants
that give rise to altered drug response.

It is important to note that biological information can
be incorporated into numerous of the tools discussed
below. Such prior information can focus research efforts
and greatly enhance the accuracy and interpretation of
the computational results. Evolutionary conservation
information helps define and refine residue contact
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Figure 6. CYP2C9 variant displays altered warfarin binding. (a) CYP2C9 (grey) bound to warfarin (yellow sticks) and haem
cofactor (blue sticks). (b) Close-up of CYP2C9 warfarin binding pocket and surrounding environment. Structural disturbances
in neighbouring residues (cyan sticks and semitransparent surface) resulting from substitution of residue 359 (red stick and semi-
transparent surface) disrupt the drug binding pocket (yellow mesh). Binding pocket generated using HOLLOW [120]. (Wild-type
CYP2C9, PBD 1OG5 [144].) (Online version in colour.)
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information, aiding protein structure prediction [172] and
both comparative [173] and free-modelling prediction
techniques [174]. Such sequence information also contrib-
utes to binding pocket and binding residue identification
[175–177]. Biophysical data, such as that derived from
NMR experiments, can complement standard force
fields and bias the sampling of protein conformational
space towards regions consistent with experimental
observations [178]. In this way, biophysical restraints
have been used to assist protein structure predictions
[179,180], MD simulations [181,182] and protein docking
studies [183,184]. Furthermore, protein mutagenesis
studies are routinely applied to both inform [185] and
validate [186] docking experiments.

There are an overwhelming number of useful tools for
each of the categories described. Highlighted below are
examples of programs that are either widely adopted or
recently developed. Numerous commercial software
packages are also available for each of the categories
of tools discussed below; however, we emphasize those
methodologies that are freely available to academic
researchers. For comprehensive tables of all available
programs, refer to the review articles cited within the
individual sections.

5.1. Protein structure visualization

There are several widely adopted software programs for
visualizing protein structures, such as PyMOL (http://
www.pymol.org) [187], UCSF Chimera (http://www.
cgl.ucsf.edu/chimera) [188], and VMD (http://www.
ks.uiuc.edu/Research/vmd) [189].

5.2. Protein structure prediction

The basic requirement for studying the structural
mechanisms underlying variable drug response is a
high-resolution protein structure. Three-dimensional
structural data are increasingly available from the
PDB; however, many drug target structures remain
elusive owing to crystallization difficulties and protein
size limitations of NMR. Moreover, while the structure
J. R. Soc. Interface (2012)
of a wild-type target may be available, those of the
variant proteins are often unknown. In such scenarios,
computational methods can be used to predict three-
dimensional protein models [164]. There are two main
modelling approaches, comparative (or homology)
methods that use structures of homologous proteins as
starting templates, and free (or ab initio) methods
that use knowledge-based algorithms or first principles
[190]. Computational methods for predicting protein
structure have been reviewed in detail [190–192], as
have automated protein modelling servers [193].

5.2.1. Comparative modelling techniques
Comparative modelling is based on the observation that
proteins with similar amino acid sequences have similar
structures [194]. Thus, the three-dimensional structure of
a protein (model) can be built based on the experimentally
determined structure of a homologous protein (template).
Comparative modelling methods have been extensively
reviewedandevaluated [195–198].Theprocess of construc-
ting a homology model for a protein of interest consists of
the following four stages, template selection, alignment
of target and template protein sequences,model generation
and model evaluation and refinement [195].

There are four principle approaches for constructing
homology models, spatial restraint, segment matching,
multiple template and artificial evolution. MODEL-
LER [199] and other spatial restraint techniques
extract geometric features (bond lengths, angles, etc.)
from the template structure and construct a model by
satisfying these restraints. Segment matching tools,
including SegMod/ENCAD [200] and the Pfrag exten-
sion [201], divide the target protein into fragments,
independently align each to a template and assemble
the fragment models. In techniques such as SWISS-
MODEL [202], multiple template alignments are used
to identify conserved structural regions, which are mod-
elled as rigid bodies, while variable regions are built up
around them. In artificial evolution programs such as
Nest [203], iterative modifications (substitutions, del-
etions, or insertions) and energy minimizations are
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applied to the template structure to gradually build up
the target protein structure.

Regardless of the modelling approach, model accu-
racy depends heavily on template selection and
sequence alignment quality. Both factors affect the
observed sequence similarity between target and tem-
plate. When sequence similarity is high (more than
50%), homology modelling can reliably generate accu-
rate, high-resolution predictions suitable for drug
design, mutational analysis and binding site detection
[190,192,204]. Models built using moderate (30–50%)
sequence similarity are typically of lower resolution,
but offer sufficient detail to assess druggability and
generate hypotheses regarding sequence mutations
[190,192,204]. For models generated from templates of
low (less than 30%) sequence similarity, the resulting
structures are generally speculative; however, accuracy
can be improved by using multiple template structures,
if available [201,204,205].

The ninth edition of the critical assessment of tech-
niques for protein structure prediction (CASP) assessed
the state of the art in comparative modelling techniques
over a diverse pool of 116 target sequences [206]. Com-
parison of 61 665 template-based predictions to their
experimentally determined structures demonstrated
that the best-performing comparative modelling
approaches are capable of accurately predicting both
overall protein structure and local interactions. Notably,
the methods underlying these best-performing technol-
ogies are distinct and have different strengths and
weaknesses, suggesting that superior models may be
attained by integrating different techniques. One com-
monly observed limitation of comparative modelling
techniques is a poor correlation between their estimated
and assessed model accuracy.
5.2.2. Free modelling techniques
In the absence of suitable templates for the protein of
interest, model creation can be based on experimental
data, such as interresidue distance and contact maps,
along with secondary structure predictions and
advanced force fields [174]. However, experimental con-
tact data are not broadly available, thus requiring that
structures be predicted from primary amino acid
sequence alone.

Free modelling methods use knowledge-based poten-
tials, physics-based potentials or a hybrid of the two to
predict protein structure from first principles. Physics-
based approaches, such as QUARK [207,208], perform
protein folding using Monte Carlo optimization on
physicochemical statistics potentials. These approaches
may offer insight into the protein folding pathway, but
more importantly require no a priori structural knowl-
edge [209]. In contrast, knowledge-based methods,
including ROSETTA [210] and I-TASSER [211], assem-
ble structural fragments with local sequence similarity
to the target using Monte Carlo simulation [208,212].
These fragment-assembly tools have been used to pre-
dict protein structures with high accuracy [212,213].
Currently, the computational complexity of free model-
ling methods limits both the model resolution and its
applicability to larger protein sequences.
J. R. Soc. Interface (2012)
Although free modelling techniques are rapidly
advancing, very high accuracy models are rare [214].
Recent CASP results indicate free modelling method
performance is highly dependent on target length,
with an apparent upper limit of 120 residues [214]. Simi-
larly, accurate prediction of multi-domain structures
remains a significant challenge [215]. Much room for
improvement remains; evaluation of 16 971 free model-
ling predictions of 30 target sequences in CASP9
showed that even top-performing technologies produced
a number of physically unrealistic models [215]. Despite
these challenges, recent years have seen dramatic
improvements in the prediction accuracy of free
modelling techniques for short target sequences [214].

5.3. Drug binding site analysis

Understanding differential drug outcomes requires
high-resolution structural knowledge of the binding
site. Computational methods to identify and analyse
drug binding sites can supplement experimentally
derived structural knowledge. Such tools have multiple
applications, including prediction of drug specificity,
guidance of drug development and repurposing, and
prediction or interpretation of drug response. In
addition, binding site prediction and analysis tools
offer insights into the effect of mutations on the
druggability of the binding pocket [166,167].

5.3.1. Binding site prediction
Binding site detection is challenging because proteins
frequently undergo large structural changes upon
ligand binding (see §3.1.1). Structure-based compu-
tational algorithms for predicting binding sites are
described in detail in recent reviews [216–218]. These
tools can be divided into four main categories, struc-
tural similarity, geometric, energy-based and docking.

Structural similarity approaches, such as 3DLigand-
Site [219], compare a query structure with a binding site
library extracted from protein–ligand complexes, select
a subset of similar structures and superimpose the
ligands onto the query structure to infer the binding
site location. Geometric-based methods, including
fpocket [220], are based on shape and assume that the
binding site is located within a cavity; potential binding
cavities are typically detected by placing or rolling
spheres of fixed or variable radii along the protein struc-
ture. SiteHound and other energy-based algorithms
work on the hypothesis that the energetic properties
of binding sites differ from those of the surround-
ing protein surface [221,222]. Creation of interaction
affinity maps between the protein surface and represen-
tative chemical probes reveal protein surface patches of
high total interaction energy that represent probable
ligand binding pockets. Finally, docking methods for
predicting binding sites computationally dock libraries
of drug-like fragments, as in FTMAP [223], or com-
pounds, as in MolSite [224], to the protein structure.
These tools are computational analogues to experi-
mental approaches for studying protein druggability
by NMR [40] or X-ray crystallography [225].

Pocket predictionprogramsvarywidely inperformance,
largely depending on the input structure conformation
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(apo- or holo-protein) and number of returned sites con-
sidered for further analysis [38,226,227]. In addition to
predicting their location, many of these tools also pro-
vide detailed characterization of binding sites suitable
for use in comparative studies, as discussed in the
following section.

5.3.2. Binding site structural comparison
Proteins lacking in overall sequence and structural hom-
ology can share binding site similarities and therefore
bind to common ligands. Algorithms for identifying
structurally similar binding sites have broad applications,
including evaluating protein druggability and inferring
protein–ligand interactions, both on- and off-target,
as recently reviewed in [218]. Comparative studies of
binding sites typically proceed through three steps.
Positional and physicochemical properties of cavity resi-
dues are first reduced to simplified geometric patterns.
These geometric patterns are then aligned to maximize
the overlay of shared features. Finally, scoring metrics
assess shared features of the final pattern alignments to
quantify binding site similarity.

One aspect in which binding site comparison
methods differ is in the identification of the optimal
pattern alignment. Comparison of protein active site
structures (CPASS) employs a straightforward align-
ment approach, exhaustively iterating translations and
rotations of the query pattern to match a fixed target
pattern [228]. More efficient methods group proximal
pattern elements into triplets and optimally align
these using geometric matching, as in ProSurfer [229],
or geometric hashing, as in SiteEngines [230]. CavBase
takes advantage of clique detection algorithms to align
binding sites by representing patterns as graphs with
pattern elements as nodes and element proximities as
edges [231]. Other factors impacting the performance
of ligand binding site comparison tools include the geo-
metric pattern resolution and incorporation of binding
site dynamics [232].

In contrast to geometric-based tools for binding
site comparison, PocketFEATURE [233] characterizes
protein pockets using the physicochemical microenviron-
ments of the pocket residues. Comparison between two
sets of pocket residue microenvironments allows identifi-
cation of similar pockets that are likely to possess similar
binding capabilities. Because the comparison uses only
weak geometric restraints, this method is less reliant on
the accuracy of crystallographic structures and has
improved performance on dynamic binding sites.

A critical factor in binding site comparison methods is
the correct identification of the binding sites themselves.
Care must be taken to accurately identify entire binding
cavities so that relevant comparisons can be gleaned.
Furthermore, it is important to note that protein targets
may bind a panel of small molecules in the same location
and by various binding modes. Such heterogeneity can
significantly alter the attributes of the binding site and
therefore bias the results of comparison.

5.4. Docking and scoring technologies

Although protein structures are numerous, many protein
targets have yet to be co-crystallized with their small-
J. R. Soc. Interface (2012)
molecule ligands. In such cases, docking technologies
(reviewed in [234–237]) allow exploration of the specific
structural details of the protein–ligand interaction. The
principle contribution of docking approaches towards
understanding the molecular details of protein–ligand
interactions is to determine the binding pose of a small-
molecule ligand. Docking technologies also have impor-
tant applications in drug discovery, where their aim is
to distinguish between true and false positives in lead
identification. Docking approaches begin with a docking
stage, during which ligand orientations and confor-
mations are sampled within the spatial constraints of
the predicted protein binding site. Then, during the
scoring stage, the best poses for each ligand are identified
and ligands are rank-ordered.

There are numerous docking programs, but none
achieve high accuracy across all protein targets. Current
methods achieve, at best, 60 per cent accuracy for the
ligand-binding conformation [238]. Selection of the best
docking algorithm and scoring function is target- and
ligand-dependent [238,239].
5.4.1. Docking
Docking a ligand into a protein binding site is a multi-
variate problem that models several degrees of freedom,
including intermolecular translation and rotation and
intramolecular conformational changes [239]. There
are multiple docking approaches, interaction site
matching, incremental construction, genetic algorithms
and Monte Carlo searches [234,236]. Interaction site
matching approaches, such as FRED [240], represent
ligands and protein binding sites as pharamacophores
and optimize their overlay to generate a docked ligand
pose. FlexX [241] and other incremental construction
programs rebuild the ligand in the protein binding site
using libraries of preferred ligand fragment conforma-
tions. Genetic algorithm docking techniques, including
AutoDock [242], mimic natural evolution where ligand
conformations are encoded on ‘chromosomes’, diversi-
fied by genetic operators (crossovers, mutations and
migrations), and subjected to natural selection using a
fitness function. Monte Carlo-based docking approa-
ches, like Glide [243], iteratively introduce random
perturbations to the ligand pose and accept/reject
them using a Monte Carlo criteria. It is important to
note that many docking technologies incorporate
multiple or blended approaches into their methods.

As discussed earlier in §3.1, protein–drug binding is
a structurally dynamic process. While historical dock-
ing programs treated the protein and ligand as rigid
bodies, recent shifts towards a dynamic representation
of the system have improved docking accuracy. How-
ever, incorporation of protein flexibility exponentially
expands the docking search space [244]. Docking
methods address this challenge through varied means,
considering a conformational ensemble of target struc-
tures (FlexX-Ensemble [245]), softening the
binding site through reduced van der Waals penalties
(ADAM [246]), and incorporating sidechain or backbone
flexibility through rotamer libraries (AutoDock [247]).
These methods capture both the induced fit and confor-
mational selection models of protein–ligand binding
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by accounting for protein flexibility and structural
ensembles, respectively.

In addition to protein and ligand flexibility, a
number of other considerations also affect docking per-
formance, such as protonation and tautomeric state of
the ligand [248] as well as treatment of water molecules
and solvent in the binding pocket [249]. These factors
continue to limit docking performance today [237].

5.4.2. Scoring
Following docking, the resulting protein–ligand com-
plexes are scored to identify the most biologically
probable conformations and estimate their interaction
strength. There are three types of scoring functions,
force field-based, empirical and knowledge-based [235].
Force field scoring functions assess the physical
atomic interactions of the system using van der
Waals, electrostatics, and bond stretching/bending/tor-
sional forces that are parameterized from experimental
data and quantum mechanical calculations. More
simply, empirical scoring functions evaluate ligand–
protein complexes using energy terms (van der Waals
energy, electrostatics, hydrogen bonding, desolvation,
entropy, and hydrophobicity) weighted by fitting to
binding affinity data of experimentally determined
protein–ligand structures. Knowledge-based scoring
functions derive pairwise atomic interaction potentials
from experimentally determined protein–ligand com-
plexes, with the assumption that frequently observed
interactions are favourable.

The most stringent tests of a scoring function are
rank ordering a series of related compounds and pre-
dicting their binding affinities [250]. Yet, both goals
remain elusive using current scoring algorithms
[237,239]. Recent alternative approaches addressing
this limitation include use of machine-learning scoring
functions [251], machine-learning scoring functions
incorporating geometric descriptors [252] and consen-
sus scoring with multiple scoring functions [237].
These approaches occasionally perform well for a par-
ticular compound series or target but are not
universally applicable. Importantly, as the content of
structural databases grows, the performance of
machine-learning scoring functions is expected to
further improve.

5.5. Molecular dynamic simulation

Protein flexibility and dynamics are fundamental to
protein–drug interactions (see §§§3.1.1, 4.3.2.1 and
4.4). Protein dynamics range in scale from rearrangement
of binding pocket sidechains to large coordinated move-
ments of entire protein domains [51]. MD simulation is
a popular tool for studying the conformational space
accessible to proteins and protein–ligand complexes
[253–255]. It has been used to refine experimental or
modelled protein structures [256], reveal transient bind-
ing sites [257], examine the stability and strength of
docked protein–ligand conformations [244], aid drug
discovery [258,259], and explore altered drug binding
profiles of protein variants [169,260,261].

In general, MD simulations depict the physical
movements of atoms and molecules as they interact
J. R. Soc. Interface (2012)
over time. This is accomplished by iteratively calculat-
ing the instantaneous forces present in the system
(typically protein, ligand, solvent and often a lipid
bilayer) and the resultant movements [253]. Forces
between atoms and the potential energy of the
system are defined by force fields, which contain
energy functions with parameters derived from exper-
imental or quantum mechanical studies. Common
force fields developed specifically for the simulation of
proteins include OPLS-AA [262], CHARMM [263],
and AMBER [264]; each contain inherent biases that
affect the sampled conformational space [265]. Widely
adopted MD software include GROMACS [266],
AMBER [267] and NAMD [268]. Thorough reviews
on MD simulation methods were recently published
[253,254,258].

Chief practical and technical considerations for MD
studies are simulation length, system size and system
resolution. Ideally, an MD simulation would provide
a continuous, atomic-level view of system interactions
over a long timescale. Recent methodological progress
towards this ideal include the use of graphics proces-
sing units [269] and distributed computing [270].
These advances facilitate the simulation of relatively
slow processes, such as the large conformational move-
ments of kinases upon drug binding, and of large
macromolecular systems, such as solvated GPCR
structures embedded in a lipid bilayer [254]. Of excep-
tional note, Shaw and colleagues recently performed
very long (approaching the millisecond and beyond)
MD simulations on an all-atom protein system using
a special-purpose machine [271]. However, simulation
length poses an ongoing challenge, as many important
biomolecular motions are slower than even the longest
simulation timescales accessible today [272]. Short
timescale MD simulations can be misleading, as they
may not fully capture the dynamic nature of a
protein–ligand system.

Given the limitations discussed above, MD simu-
lation is of principle use when small conformational
changes are expected. Normal mode analysis (NMA)
is a powerful tool for exploring large conformational
changes in protein structures, which are often impor-
tant for ligand binding events [273–275]. NMA tools,
such as The Elastic Network Model (elNémo) webserver
[276], use a few low-frequency motions to describe
rearrangements of protein domains and other types of
large-amplitude MD. In contrast to many MD simu-
lations, NMA offers the potential to extract essential
dynamic information for global movements of large
protein systems; however, coarse-grained models must
often be used in such cases and the resulting studies
therefore suffer from lower accuracy and specificity at
the local scale [277].
6. DATABASES

There is currently no single database suitable for a
thorough examination of the interplay between coding
mutations, protein structure and drug response. Here,
we briefly highlight several databases dedicated to indi-
vidual components of the effect of genetic variation on
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Table 2. Databases for studying three-dimensional protein structures, genetic variants and drug response.

database URL

three-dimensional protein structures
CSA [278] http://www.ebi.ac.uk/thornton-srv/databases/CSA
DCD [41] http://fpocket.sourceforge.net/dcd
FireDB [279] http://firedb.bioinfo.cnio.es
ModBase [280] http://modbase.compbio.ucsf.edu
PDB [34] http://www.pdb.org
protein model portal [281] http://www.proteinmodelportal.org
sc-PDB [282] http://bioinfo-pharma.u-strasbg.fr/scPDB
SitesBase [283] http://www.modelling.leeds.ac.uk/sb
SWISS-MODEL repository [284] http://swissmodel.expasy.org/repository

three-dimensional protein–ligand structures and interactions
binding MOAD [285] http://www.bindingmoad.org
CPASS [228] http://cpass.unl.edu
DrugBank [48] http://www.drugbank.ca
PDBbind [286] http://www.pdbbind.org
Relibase [287] http://relibase.rutgers.edu
SBKB [288] http://sbkb.org
TTD [289] http://bidd.nus.edu.sg/group/cjttd/TTD.asp

genetic variants & disease
dbSNP [290] http://www.ncbi.nlm.nih.gov/snp
catalogue of published GWAS [291] http://www.genome.gov/gwastudies
OMIM [292] http://omim.org
SCAN [293] http://www.scandb.org
SwissVar [294] http://swissvar.expasy.org

genetic variants and three-dimensional protein structures
LS-SNP [295] http://ls-snp.icm.jhu.edu/ls-snp-pdb
VnD [296] http://vandd.org
SuperCYP [297] http://bioinformatics.charite.de/supercyp

genetic variants and drug response
PharmGKB [298] http://www.pharmgkb.com
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drug response from the perspective of protein structure
(summarized in table 2).
6.1. Databases of three-dimensional
protein structures

The most comprehensive protein structure repository is
the PDB, which currently holds approximately 73 000
protein structures (roughly 25% are of human origin)
[34]. The PDB is well integrated into the network of bio-
informatics tools and contains links to external resources
for protein and small-molecule entities, integrated soft-
ware packages for protein structure comparison and
small-molecule similarity searching, and protein struc-
tural and functional annotations derived from other
databases. Multiple secondary databases then extract
and organize the experimentally determined structural
data from the PDB using different criteria. sc-PDB col-
lects structural examples of drug binding sites and
includes analyses of the binding cavities and ligand chemi-
cal structures [299]. SitesBase annotates and compares
ligand binding site structural similarities [283]. Druggable
Cavity Directory (DCD) is a manually annotated reposi-
tory of binding sites scored for druggability [41]. FireDB
contains structures, ligands and annotated functionally
important binding site residues [279]. Catalytic Site
Atlas (CSA) annotates enzyme active sites, specifically
catalytic residues, as three-dimensional structural tem-
plates for structures derived from the PDB [278]. In
addition, there are a handful of repositories for protein
J. R. Soc. Interface (2012)
models, including ModBase [280], Protein Model Portal
[281] and SWISS-MODEL Repository [284].
6.2. Databases of protein–ligand interactions

Several databases integrate known protein–ligand inter-
actions with a variety of external data sources.
DrugBank is a catalogue of small molecules and integrates
target protein structures when available [48]. Other data-
bases, such as Binding MOAD [285] and PDBbind [286],
link PDB structures with experimental binding data.
Relibase offers tools for comparing ligand binding sites,
analysing ligand similarityand searching for binding part-
ners [287]. Similarly, CPASS database contains ligand-
defined protein active sites from structures in the PDB
[228]. Furthermore, the Structural Biology Knowledge-
base (SBKB) [288] and Therapeutic Targets Database
(TTD) [289] enhance the study of protein–ligand inter-
actions with information regarding three-dimensional
protein structures, ligands, pathways and diseases.
6.3. Databases linking genetic variants
and disease

The most comprehensive SNP database is dbSNP, with
approximately 20 million validated SNP entries [290].
Online Mendelian Inheritance in Man (OMIM) links
genetic disorders with their causative genes [292]. Swiss-
Var is a curated set of annotated missense SNPs linked
with protein functional changes and possible disease
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association [294]. SNP and copy number annotation
database (SCAN) annotates SNPs according to phys-
ical chromosomal location or effect on gene expression
[293]. The catalogue of published genome-wide associ-
ation studies (GWAS) is a collection of manually
curated SNP-trait and SNP-disease associations from
nearly 1000 published GWAS [291].

6.4. Databases linking genetic variants and
protein structure

The LS-SNP database maps human coding mutations
onto protein structures and assesses positional residue
conservation patterns within the protein superfamily
to predict the mutation’s structural and functional
impact [295]. Variations and Drugs (VnD) database is
a structure-centric database of disease-related protein
variants and drugs [296]. Protein family-specific data-
bases also exist. Most notably, SuperCYP database
reports manually curated data regarding the effect of
SNPs on CYP enzyme structure, activity and drug
metabolism [297].

6.5. Databases linking genetic variants and
drug response

Parsing the relationship between genetic polymorph-
isms and drug outcome is complex. A patient’s
clinical response depends on pharmacodynamic and
pharmacokinetic interactions, both of which can be
altered by genetic variation and disease state.

PharmGKB is a manually curated knowledgebase of
the impact of genetic variation on drug response [298].
It collects information on genes, drugs and diseases
and emphasizes the clinical interpretation of the genetic
variants, including information on drug dosing and gen-
etic tests. PharmGKB documents approximately 500
genetic variants that significantly affect drug response.
Of these variants, 70 per cent alter pharmacodyna-
mic mechanisms, 10 per cent affect pharmacokinetic
mechanisms and 10 per cent disrupt both pharmaco-
dynamics and pharmacokinetics. PharmGKB
identifies a subpopulation of genetic variants affecting
drug response as ‘very important pharmacogenomic
(VIP)’ genes. Missense mutations found in these VIP
genes are mapped to representative homologous protein
structures (where available) and associated drugs in
table 3.
7. OUTLOOK

The interplay between genetic variation and protein
structure forms the basis of interindividual variability
in drug response. As such, this complex relationship is
of increasing importance in bioinformatics and drug
development. Three-dimensional protein structures are
today frequently used in drug development practices,
from selection of a therapeutic target, to determination
of a molecular mechanism of action, to identification of
a target patient population. As a result, great strides
have been made in understanding the structural details
governing drug–target interactions for recently approved
therapeutic agents. Similarly, this information can be
J. R. Soc. Interface (2012)
harnessed to predict the impact of missense mutations
on drug response. In clinical practice protein structural
insights along with a patient’s genetic profile can be
leveraged to improve treatment outcome, as evidenced
by the results of gene-based treatment trials [7].

Although the focused study of the interaction of a
drug with its target protein can offer insights into
treatment outcome, complete understanding of drug
response requires a systems pharmacology perspective.
For instance, multivariate systems biology approaches
that consider multiple proteins, signalling pathways,
cell types and tissues can accurately recapitulate and
predict therapeutic responses [310–313]. Recently,
there has been a call for the inclusion of interpatient
variability into these models [312]. This strategy holds
tremendous promise for improving drug performance in
clinical settings, but will first require extensive structural
and mechanistic knowledge. Thus, there is an urgent
need for high-throughput methods to systematically
analyse drug–target interactions from a structural
perspective.

Although the rate of structure deposition to the PDB
is ever-increasing [314], deposition of pharmaceutically
relevant protein structures remains low, limiting our
understanding of variable drug response for many tar-
gets. Challenges to attaining crystal structures for
protein targets include obtaining requisite large quan-
tities of purified protein and inability to prepare
crystals of target proteins in biologically relevant con-
formations [315]. As a result, three-dimensional
structures are unavailable for many therapeutically
important proteins. For example, though one-third of
clinical drugs target these proteins [1], only 13 human
rhodopsin-like GPCR (Pfam PF00001) structures are
currently available in the PDB. Furthermore, these
structures represent a highly biased sampling of rho-
dopsin conformations, namely inactive and apoprotein
forms, precluding structural understanding of GPCR
activation upon agonist binding. Only recently did
Standfuss et al. [316] release an agonist-bound rhodop-
sin structure. Barriers to structural availability are
gradually being overcome by structural genomics tech-
nology advances such as improved protein production
platforms, automated high-throughput crystallization
and data collection systems, and advanced software
for structure determination [16]. Additionally, recently
launched initiatives focused on structural determi-
nation of biomedically important proteins, including
the protein structure initiative, RIKEN Structural
Genomics/Proteomics Initiative and Structural Geno-
mics Consortium, have collectively contributed roughly
10 500 unique protein structures to the PDB [314].

Compounding the problem of incomplete and biased
structural data for therapeutic targets, this information
is not well linked to experimental and clinical infor-
mation regarding genetic variants and drug response.
Current practice for studying variable drug response
in the context of target protein structures with genetic
variants requires at least partial manual curation. In
the future, we anticipate that a standardized lexicon,
improved text-mining algorithms and high-throughput
structural analysis or prediction methods will lead to
integrated and highly annotated databases. Different
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Table 3. PharmGKB missense variants affecting drug response. Column 1 contains the protein encoded by the VIP gene in
parentheses. A representative protein structure from the PDB is found in column 2. Missense mutations in the gene are listed
by reference SNP ID in column 3 and by amino acid substitution in column 4. Column 5 categorizes the variant’s effect as
pharmacodynamic (PD) or pharmacokinetic (PK). Associated drugs are listed in column 6.

protein PDB ID rsID mut effect drug

P-glycoprotein (ABCB1) 3G60 [300] rs2032582 S893T PD, PK doxorubicin
paclitaxel

rs2229107 S1141T PK phenytoin
b-1 adrenergic Receptor (ADRB1) 2Y00 [301] rs1801252 S39G PD, PK atenolol

bisoprolol
verapamil

rs1801253 G389R PD fluorouracil
metoprolol

b-2 adrenergic receptor (ADRB2) 2R4R [302] rs1042713 R16G PD salmeterol
rs1042714 Q27E PD carvedilol

catechol O-methyltransferase
(COMT)

3BWM [303] rs4680 V158M PD antipsychotics

nicotine
cytochrome P450 2A6 (CYP2A6) 1Z10 [304] rs1801272 L160H PK anthracyclines

capecitabin
cyclosporine
cytarabine
dexamethasone
doxorubicin
efavirenz
fexofenadine
mitoxantrone
nicotine
paclitaxel
platinum
taxanes
vincristine

rs28399468 R485L PK nicotine
rs5031016 I471T PK nicotine

cytochrome P450 2B6 (CYP2B6) 3IBD [305] rs2279343 K252R PK cyclophosphamide
rs28399499 I328T PK efavirenz

nevirapine
rs3211371 R487C PD bupropion
rs3745274 Q172H PK cyclophosphamide

efavirenz
nevirapine

rs8192709 R22C PK cyclophosphamide
cytochrome P450 2C9 (CYP2C9) 1OG2 [144] rs1057910 I359L PD, PK losartan

phenytoin
sulfonamides and urea deriv.
valproic acid
warfarin

rs1799853 R144C PD, PK phenytoin
sulfonamides and urea deriv.
warfarin

rs28371685 R335W PD, PK phenytoin
warfarin

rs28371686 D360E PD, PK phenytoin
warfarin

rs7900194 R150H PD phenytoin
warfarin

cytochrome P450 2D6 (CYP2D6) 2F9Q [306] rs1065852 P34S PD tamoxifen
rs1135840 T486S PD tamoxifen
rs16947 C296R PD tamoxifen

dihydropyrimidine dehydrognase
(DPYD)

1GT8 [307] rs1801159 I543V PD, PK fluorouracil

glutathione S-transferase (GSTP1) 2A2R [308] rs1695 I105V PD, PK cisplatin
cyclophosphamide
doxorubicin
fluorouracil

(Continued.)
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Table 3. (Continued.)

protein PDB ID rsID mut effect drug

mercaptopurine
methotrexate
oxaliplatin
platinum compounds
taxanes

inward-rectifying potassium channel
11 (B2RC52)

— rs5219 K23E PD glibenclamide

metformin
repaglinide
sulfonamides & urea deriv.

methylenetetrahydrofolate reductase
(MTHFR)

— rs1801131 E429A PD capecitabine

cisplatin
fluorouracil
leucovori
mercaptopurine
methotrexate
nitrous oxide
oxaliplatin
pemetrexed

rs1801133 A222V PD, PK capecitabine
carboplati
cisplatin
cyclophosphamide
dactinomycin
doxorubicin
fluorouracil
leucovorin
methotrexate
nitrous oxide
oxaliplatin
pemetrexed
vincristine

folate transporter 1 (SLC19A1) — rs1051266 H27R PD, PK leucovorin
mercaptopurine
methotrexate
prednisone

solute carrier organic anion
transporter 1B1 (SLCO1B1)

— rs11045819 P155T PD fluvastatin

rs2306283 N130D PK pravastatin
rs4149056 V174A PD, PK atorvastatin

cerivastatin
HMG-CoA reductase inhib.
methotrexate
mycophenolate mofeti
repaglinide
rifampin
simvastatin

thiopurine S-methyltransferase
(TPMT)

2BZG [309] rs1142345 Y240C PD, PK cisplatin

mercaptopurine
s-adenosylmethionine

rs1800460 A154T PD, PK cisplatin
mercaptopurine
s-adenosylmethionine
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information sources must then be integrated into a com-
prehensive structural database that allows selection of
an annotated missense SNP, mapping of the mutation
onto a protein structure, evaluation of the interaction
between mutated residues and drug-like ligands, and
prediction of the effect of novel SNPs on drug activity
or metabolism. Such a database will play a critical
J. R. Soc. Interface (2012)
role in establishing protein structure information as a
key tool in pharmacogenetics studies.

Another area in which technological advances are
needed is that of high-throughput structural analysis
of mutant protein targets and their interactions with
therapeutic compounds. Such tools would build upon
existing methods that explore the relationship between
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protein sequence variants, three-dimensional structure
and drug response, as discussed previously in this
review, and would offer a high-resolution structural
understanding of genome-wide pharmacogenetic data.
Developments in this area would take advantage of
the expansive amount of information anticipated from
next-generation sequencing techniques [317] and high-
throughput chemical proteomics techniques [318].
Furthermore, the resulting structural technologies could
interface with larger systems biology and network
pharmacology studies to provide broad insight into varia-
bility in drug response among diverse patient populations.

Importantly, structural details of target proteins
and their corresponding mutant isoforms can also be
applied to inform drug design strategies, as recently
reviewed [319–324]. For example, detailed knowledge of a
target protein’s three-dimensional structure facilitates the
development of more selective drugs [169,325,326] and
second-generation therapeutics for treating patients with
unresponsive disease [327]. In addition, comparative analy-
sis of target protein structures of currently marketed drugs
allows for efficient drug repurposing to accelerate drug
development for treating rare and orphan diseases [328–
330]. Finally, structural knowledge of a drug target is criti-
cal for the intelligent combination of therapeutics acting on
a single target in order to improve clinical efficacy and
reduce the emergence of drug-resistant variants [331,332].

There is immense opportunity in translating infor-
mation regarding the genetic differences between
individuals and the three-dimensional structures of
protein targets into drug development and clinical prac-
tice. Although the mechanism of many drugs is still not
fully understood, we expect that the increasing number
of detailed structural studies revealing drug–target
interactions will lead to maximized likelihood of patient
response, reduced drug resistance, and fewer adverse
events. We believe that through the application of our
expanding knowledge in this area it will be possible to
address the ‘efficacy–effectiveness gap’ of currently
marketed drugs and improve clinical outcomes.
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