********************************************************************************************** ** ** ** SNPs&GO ** ** Predicting disease associated variation using GO terms ** ** ** ********************************************************************************************** Sequence File: SP.seq Mutation Prediction RI Probability Method L125Q Neutral 1 0.475 PhD-SNP: F[L]=13% F[Q]=0% Nali=167 L125Q Unclassified NA NA PANTHER: F[L]=NA F[Q]=NA L125Q Neutral 8 0.120 SNPs&GO I132V Neutral 5 0.248 PhD-SNP: F[I]=40% F[V]=9% Nali=193 I132V Unclassified NA NA PANTHER: F[I]=NA F[V]=NA I132V Neutral 8 0.096 SNPs&GO Y160H Disease 7 0.836 PhD-SNP: F[Y]=59% F[H]=1% Nali=191 Y160H Unclassified NA NA PANTHER: F[Y]=NA F[H]=NA Y160H Neutral 1 0.427 SNPs&GO M170V Neutral 6 0.220 PhD-SNP: F[M]=6% F[V]=8% Nali=191 M170V Unclassified NA NA PANTHER: F[M]=NA F[V]=NA M170V Neutral 7 0.137 SNPs&GO S232C Neutral 7 0.171 PhD-SNP: F[S]=21% F[C]=1% Nali=108 S232C Unclassified NA NA PANTHER: F[S]=NA F[C]=NA S232C Neutral 9 0.040 SNPs&GO C264Y Disease 4 0.691 PhD-SNP: F[C]=18% F[Y]=1% Nali=180 C264Y Unclassified NA NA PANTHER: F[C]=NA F[Y]=NA C264Y Neutral 2 0.404 SNPs&GO G297S Neutral 4 0.306 PhD-SNP: F[G]=37% F[S]=6% Nali=178 G297S Unclassified NA NA PANTHER: F[G]=NA F[S]=NA G297S Neutral 8 0.076 SNPs&GO L463V Disease 2 0.588 PhD-SNP: F[L]=95% F[V]=2% Nali=175 L463V Unclassified NA NA PANTHER: F[L]=NA F[V]=NA L463V Neutral 4 0.285 SNPs&GO S536C Neutral 7 0.156 PhD-SNP: F[S]=57% F[C]=0% Nali=27 S536C Unclassified NA NA PANTHER: F[S]=NA F[C]=NA S536C Neutral 9 0.025 SNPs&GO A540D Neutral 6 0.215 PhD-SNP: F[A]=80% F[D]=10% Nali=19 A540D Unclassified NA NA PANTHER: F[A]=NA F[D]=NA A540D Neutral 9 0.055 SNPs&GO Mutation: WT+POS+NEW WT: Residue in wild-type protein POS: Residue position NEW: New residue after mutation Prediction: Neutral: Neutral variation Disease: Disease associated variation RI: Reliability Index Probability: Disease probability (if >0.5 mutation is predicted Disease) Method: SVM type and data PANTHER: Output of the PANTHER algorithm PhD-SNP: SVM input is the sequence and profile at the mutated position SNPs&GO: SVM input is all the input in PhD-SNP, PANTHER and GO term features F[X]: Frequency of residue X in the sequence profile Nali: Number of aligned sequences in the mutated site ********************************************************************************************** ** ** ** Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. (2009). Functional ** ** annotations improve the predictive score of human disease-related mutations in ** ** proteins. Human Mutation. 30:1237-1244. ** ** ** ** Capriotti E, Altman RB. (2011). Improving the prediction of disease-related vari- ** ** ants using protein three-dimensional structure. BMC Bioinformatics. 12 (Sup.4) S3. ** ** ** **********************************************************************************************