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ABSTRACT

Motivation: The recent discovery of tiny RNA molecules such as
µRNAs and small interfering RNA are transforming the view of RNA as
a simple information transfer molecule. Similar to proteins, the native
three-dimensional structure of RNA determines its biological activity.
Therefore, classifying the current structural space is paramount for
functionally annotating RNA molecules. The increasing numbers
of RNA structures deposited in the PDB requires more accurate,
automatic and benchmarked methods for RNA structure comparison.
In this article, we introduce a new algorithm for RNA structure
alignment based on a unit-vector approach. The algorithm has been
implemented in the SARA program, which results in RNA structure
pairwise alignments and their statistical significance.
Results: The SARA program has been implemented to be of
general applicability even when no secondary structure can be
calculated from the RNA structures. A benchmark against the ARTS
program using a set of 1275 non-redundant pairwise structure
alignments results in ∼6% extra alignments with at least 50%
structurally superposed nucleotides and base pairs. A first attempt
to perform RNA automatic functional annotation based on structure
alignments indicates that SARA can correctly assign the deepest
SCOR classification to >60% of the query structures.
Availability: The SARA program is freely available through a World
Wide Web server http://sgu.bioinfo.cipf.es/services/SARA/
Contact: mmarti@cipf.es

1 INTRODUCTION
Recent discoveries of new RNA functions are changing our view of
RNA molecules and reinforcing the so-called ‘RNA world’ origin of
life (Bartel, 2004; Dorsett and Tuschl, 2004; Doudna, 2000; Staple
and Butcher, 2005). RNA is now known to play an important role in
biological functions such as enzymatic activity (Staple and Butcher,
2005), gene transcriptional regulation (Bartel, 2004; Dorsett and
Tuschl, 2004; Staple and Butcher, 2005) and protein biosynthesis
regulation (Doudna, 2000). Therefore, much attention is lately being
paid to the structural determination of RNA molecules. Such efforts
have increased the pace of deposition of RNA structures in the
Protein Data Bank (PDB) (Berman et al., 2002). Currently (January
2008), the PDB database stores more than 1300 RNA structures.
Such a wealth of data may allow, for first time, the analysis and
characterization of the RNA structural space, which will help to
characterize RNA function.

RNA folding is a hierarchical process by which base pairing
formation affects the final three-dimensional (3D) conformation
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of the RNA molecule (Tinoco and Bustamante, 1999). Hence,
algorithms for RNA secondary structure prediction have classically
been used for characterizing RNA structure and function. Although
more than two decades have past since the development of the
first algorithms for RNA secondary structure prediction (Nussinov
and Jacobson, 1980; Zuker and Sankoff, 1984; Zuker and Stiegler,
1981), there has been limited development in RNA tertiary structure
analysis and, in particular, in RNA structure comparison. Only
recently, the PRIMOS/AMIGOS (Duarte et al., 2003; Wadley
et al., 2007), FR3D (Sarver et al., 2008), ARTS (Dror et al.,
2005, 2006) and DIAL (Ferre et al., 2007) programs have been
developed for structurally comparing two RNA molecules. The
PRIMOS/AMIGOS programs search for structural similarities of
consecutive RNA fragments with five or more nucleotides by
comparing specific η and θ pseudo angles as well as the sugar
pucker phase. The FR3D program uses a base-centered approach
for conducting a geometric search of local and composite RNA
structures. The COMPADRES program, which implements the
PRIMOS algorithm, has been applied for searching local structural
motifs in known RNA structures (Wadley and Pyle, 2004). The
ARTS program, which represents RNA structures by a set of
contiguous four phosphate atoms or quadrats, detects similarities
between quadrats after a rigid superimposition of two RNA
structures followed by an optimization based on a bipartite graph
strategy. Finally, the DIAL program, which implements a scoring
function combining nucleotide, dihedral angles and base-paring
similarities, compares the two RNA structures using a dynamic
programming algorithm.

Although the PRIMOS/AMIGOS, ARTS and DIAL programs,
result in accurate RNA structure alignments, they have some
limitations: (i) the PRIMOS/AMIGOS program have limited
applicability to searching only for local motifs regardless of global
similarities between two structures, (ii) the DIAL method, in its
default version, only calculates an alignment score and requires
substantial computational time to return a statistical evaluation of
its significance and (iii) ARTS requires the existence of secondary
structure elements in both structures to compute the final alignment.
To overcome such limitations, we have developed a new RNA 3D
alignment method (SARA), which does not require the assignment
of base pairs from structure and provides a statistical assessment
of the significance of the resulting alignment. The SARA algorithm
uses a unit-vector approach inspired by the MAMMOTH program
for protein structure alignment (Ortiz et al., 2002). The SARA
program has been benchmarked for its alignment accuracy against
the ARTS program as well as for its use in RNA function prediction.
Its general applicability will allow an all-against-all comparison
of known RNA structures, which will help in characterizing the
relationship between sequence, structure and function of RNA
molecules.
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Table 1. Composition of the different sets used in this work

RNA chains Alignments

PDBNov06 2179 –
NR95 277 38 226
NR95-HR 51 1 275
NR95-SCOR 60 1 770
OPT 141 300
RAND 300 44 850

We begin this article by describing the benchmark sets used and
the algorithm behind the SARA program in Section 2. Then we
assess the accuracy of the SARA alignments in Section 3. Finally in
Section 4, we discuss its applicability and usage for RNA structure
pairwise alignment.

2 METHODS

2.1 RNA structure and alignment sets
A total of 1101 structure files (November 2006), which contained 2179 RNA
chains, were downloaded from the PDB database (Table 1). The NR95 set
was obtained by removing: (i) sequence redundancy at 95% identity from the
initial set of downloaded structures (PDBNov06) using the ‘cd_hit’ program
(Li and Godzik, 2006), (ii) all RNA structures shorter than 20 nucleotides and
larger than 320 nucleotides (i.e. 407 and 23 chains, respectively) and (iii) all
RNA structures with only P trace atoms. The redundancy filter was applied to
reduce the CPU time for calculating all-against-all comparisons within each
set. Moreover, very short RNA structures (e.g. <20 nucleotides) invariably
result in random pairwise alignments (i.e. P-value <3.0) and very large
RNA structures significantly increased the needed CPU time for computing
our alignment sets. The NR95 set results in 277 chains and 38 226 pairwise
alignments. To generate the NR95-HR set, an additional filter was applied to
remove all RNA structures with crystal resolution greater than 4.0 Å and with
missing backbone atoms, resulting in 51 chains (1275 pairwise alignments).
To measure the ability of SARA in detecting functional similarities between
two RNA structures, we generated the NR95-SCOR set that contained pairs
of structures in the NR95 that were functionally annotated in the same
SCOR class (Tamura et al., 2004). The NR95-SCOR set resulted in 60
chains (1770 pairwise alignments) covering 18 SCOR functional classes.
Finally, to calculate a background distribution of alignments between two
unrelated RNA molecules, 300 RNA structures were generated by connecting
randomly selected nucleotide backbone conformations over 42 possible
rotamers (Murray et al., 2003). The RAND set contained 300 structures
(44 850 pairwise alignments) uniformly distributed over lengths between 20
and 320 nucleotides.

To optimize the independent parameters of SARA, an OPT set was
generated by randomly selecting 300 pairwise structure alignments with
a P-value higher than 5 from those obtained from the all-against-all
comparison of the structures in the NR95 set. The 1275 pairwise alignments
from the NR95-HR set were used to benchmark the accuracy of the SARA
alignments compared to those obtained with the other only available stand-
alone program at the time (i.e. the ARTS program). The 1770 pairwise
alignments in NR95-SCOR set were used to benchmark the accuracy
of SARA for automatically annotated RNA structures. Finally, the 44
850 pairwise alignments from the RAND set were used to calculate the
background distribution of random alignments.

The entire sets of RNA structures are available for download at
http://sgu.bioinfo.cipf.es/datasets/.

2.2 SCOR database
The structural classification of RNA database contains 579 PDB entries with
5350 internal loops and 2920 hairpin loops (SCOR 2.0.3, October 2004).
SCOR provides a classification of RNA structural motifs, function, tertiary
interactions as well as their relationships. Structural elements in the SCOR
database are organized in directed acyclic graph architectures, allowing
multiple parent classes for a motif. The SCOR database was used to generate
the NR95-SCOR set with annotated classification mentioned earlier.

2.3 Alignment evaluation
The choice of metric to evaluate a structure alignment is difficult because two
different measures are needed (i.e. accuracy and coverage). In this work, we
have used two scores that calculate the percentage of superposed nucleotides
or base pairs within a given distance cut-off. Thus, such scores quantify at
the same time both accuracy and coverage of a given alignment. First, the
percentage structural identity (PSI) is

PSI=100
nal

N
(1)

where nal is the number of aligned nucleotides within a threshold of 4.0 Å
and N is the length of the shorter of the two RNA structures. Second, the
percentage of aligned secondary structure (PSS) is

PSS=100
pal

NP
(2)

where pal is the number of aligned base pairs within a threshold of 4.0 Å and
NP is the smallest number of base pairs of the two aligned RNA structures.

2.4 Algorithm overview
SARA implements a unit-vector representation of RNA structures that
calculates a set of vectors between consecutive atoms of a user-selected
type (Kedem et al., 1999). A similar approach has been previously used
for protein pairwise structure alignment by the MAMMOTH program (Ortiz
et al., 2002). Such a simplified representation is a key for finding structurally
equivalent atoms between two rigid body structures within seconds of CPU
time. SARA calculates an alignment by the following procedure: (i) for
each input RNA structure, its atom trace is calculated by selecting all
contiguous atoms of a user-defined type; (ii) the resulting atom trace is used
to calculate all unit-vectors between consecutive atoms; (iii) a set of k unit-
vectors are mapped into a unit-sphere for each nucleotide, where k is a
user-defined parameter; (iv) an all-against-all score matrix is calculated with
the unit-vector root mean square (URMS) distances between all pairs of unit-
spheres from each structure (Chew et al., 1999); (v) a dynamic programming
procedure (Needleman and Wunsch, 1970) using zero end gap penalties is
applied to the scoring matrix to identify the global alignment between the two
structures; (vi) a variant of the MaxSub algorithm (Ortiz et al., 2002; Siew
et al., 2000) is used to maximize the number of atoms within 3.5 Å distance
between the two structures and (vii) a P-value and its minus logarithm are
calculated to assess the statistical significance of the resulting alignment
score.

Differently from protein structure alignment, where maximizing the
number of aligned residues or minimizing the RMSD are usually the main
goals, for RNA structures it is also important that base pairs are correctly
aligned. Therefore, steps (i) and (vi) of the SARA algorithm also include
the possibility of using secondary structure information calculated by the
3DNA program (Lu and Olson, 2003). If such option is selected by the user,
SARA will calculate an atom trace using only contiguous atoms involved
in base-pairing (step i) and will maximize the number of base-pair atoms
within 3.5 Å distance cut-off (step vi).

2.5 Alignment score and significance
The score corresponding to the match of two unit-spheres of k unit-vectors is
calculated by their URMS (i.e. URMSi,j for pairs of sets i and j). Such score

i113



[18:47 11/8/03 Bioinformatics-btn288.tex] Page: i114 i112–i118

E.Capriotti and M.A.Marti-Renom

(Si,j) is obtained by finding the rotation of the two unit-spheres that minimizes
the distances between the two sets of k unit-vectors:

Si,j = (URMSR −URMSi,j)

URMSR f (URMSi,j,URMSR) (3)

where f (URMSi,j,URMSR) is equal to 10 for URMSi,j > URMSR otherwise
0 and URMSR is the minimum distance between two random sets (Chew
et al., 1999):

URMSR =
√

2.0− 2.84√
k

(4)

where k is the number of unit-vectors in a unit-sphere. The final score of
the pairwise alignment is the sum of individual scores (Si,j) for the optimal
path between two compared structures minus the affine gap penalties after
dynamic programming (Needleman and Wunsch, 1970). The optimal gap
initiation and extension penalties for SARA with and without secondary
structure information were identified by maximizing the number of aligned
nucleotides for the training set of RNA pairs. The grid-like search for optimal
parameters explored all combinations for initiation gap penalty from −9 to
0 in steps of 1, extension gap penalty from −0.8 to 0 in steps of 0.2, and
number of unit-vectors in a unit-sphere from 3 to 7.

After an alignment is produced, SARA calculates its PSI as well as
P-value for estimating the probability of obtaining an equal- or better-scored
alignment by chance. The distribution of the PSI scores for a set of random
RNA structures follows an extreme value distribution and the probability for
a given alignment to obtain a score x larger than z is calculated by integrating
the Gumbel distribution:

P(x>z)=1−exp

(
−exp

(
− π√

6
z−γ

))
(5)

where γ = 0.5772, π = 3.1416 and z is calculated using µ, σ that better fits
to the extreme value distribution.

z= x−µ

σ
(6)

2.6 Optimal parameters
The parameters in the SARA program have been optimized using the OPT
set of pairwise alignments. The parameters that were optimized for the
SARA program include number of atoms to calculate a unit-sphere, open and
extension gap penalties and use of secondary structure information (Table 2).

A grid-like search procedure was performed to identify the set of
parameters that resulted in the maximum number of superposed nucleotides
(nal) for the whole set of alignments. The optimal parameters for SARA
using secondary structure information were set to three consecutive unit-
vectors between base pairs for each unit-sphere, an opening gap penalty of
−7.0, and extension gap penalty of −0.6. If the secondary structure of an
RNA molecule is not used, the optimal parameters are seven consecutive
unit-vectors, −8.0 opening gap penalty and −0.2 extension gap penalty.

2.7 SARA and ARTS comparison
The default implementations of the SARA and ARTS programs were
compared to each other by their accuracy in aligning pairs of RNA structures
from the NR95-HR set (i.e. 1275 RNA structural alignments from an all-
against-all comparison of 51 chains). The ARTS program is able to align
a pair of RNA structures if at least two base pairs can be calculated from
each structure. Therefore, 16 chains of the NR95-HR were joined to co-
crystallized RNA chains that were base pairing with the query structure.
To fairly compare the results from the SARA and ARTS programs, we
implemented an algorithm similar to ProSup (Lackner et al., 2000), which
calculates a distance matrix from the coordinates of a pair of aligned
structures. A distance between two atoms i and j (one from each structure)
was used to calculate a distance score (dsi,j):

dsi,j =max(0,t−di,j) (7)

where t is the distance threshold set to 4.0 Å. The resulting distance matrix is
then used in a dynamic programming algorithm with 0 gap penalties, which

Table 2. Optimal parameters for the SARA program

Gap opening Gap extension k

Secondary structure −7.0 −0.6 3
No secondary structure −8.0 −0.2 7

results in the identification of all equivalent positions that are within 4.0 Å
distance between the two aligned structures. The final equivalences (i.e. nal)
are used to calculate the PSI as well as the PSS of the alignment.

3 RESULTS

3.1 Structure representation
The accuracy of SARA depends on the atom representing the
RNA structure. For proteins, most of the available structure
alignment methods consider Cα atom as the best descriptor
because consecutive Cα atoms have a conserved distance of
∼3.5 Å. However, the RNA backbone is more flexible than protein
backbone and consecutive atoms of the same type have much
variable distances (Capriotti and Marti-Renom, 2008). Previous
methods developed for RNA structure alignment used different
representations. For example, the PRIMOS and COMPADRES
programs use specific η and θ pseudo angles between P and
C4′ atoms, the ARTS program uses vector distances between P
atoms forming a base-pair interaction, and the DIAL program uses
an all-atom representation from which several torsion angles are
calculated.

To select the atom type representing an RNA structure in SARA,
we have used the structures in the NR95-HR set for calculating the
distribution of distances between consecutive C3′, C4′, O3′ and P
atoms (Fig. 1). The average distances between the backbone atoms
were 5.8, 6.1, 6.2 and 6.1 Å for the C3′, C4′, O3′ and P atom
types, respectively. The most variable distance corresponded to the P
atom type with 0.6 Å of mean standard deviation of the distribution.
The C3′ atom type was the most conserved distance among the
tested backbone atom types (i.e. 0.4 Å of mean standard deviation).
Therefore, the SARA method has been optimized for the use of C3′
atom to represent an RNA structure. Alternatively, SARA can use the
P atom trace when no other atoms are present in the crystallographic
conformation of the structure.

3.2 Statistical significance of the alignment score
The statistical significance of a pairwise structure alignment score
depends on the length of the shorter of the two aligned structures
(N). To calculate such statistic, it is necessary to have a background
set of pairwise structure alignment scores representing all possible
comparisons between two structures. For proteins, such distribution
has been typically obtained by comparing randomly selected pairs
of known structures. However, for RNA the current coverage
of the structural space is limited (i.e. contains only about 1300
entries in the PDB) and is sparsely distributed as indicated by its
length distribution (Fig. 2). Three major regions can be detected in
the distribution of lengths for known RNA structures: (i) a large
number of molecules with lengths shorter than 50 nucleotides, (ii) a
peak between 50 and 100 nucleotide mostly populated by tRNA
molecules and (iii) a poorly populated region with lengths over
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Fig. 1. Distance distributions for consecutive backbone atoms C3′, C4′, O3′
and P calculated from the 51 chains in the NR95-HR set. The average and
standard deviation distances are provided within each plot.

Fig. 2. RNA length distribution for the 277 structure chains in the NR95 set.

100 nucleotides. Such unequal length distribution precludes the use
of known RNA structures to calculate a background distribution
of pairwise scores. Indeed, the scores resulting from an NR95 all-
against-all comparison did not follow an extreme value distribution
needed to calculate a statistical significance of a score (data not
shown). Thus, we had generated a set of random structures (i.e.
RAND set), which was used to calculate a background distribution
of alignment scores. The final set of alignments was then divided
in 30 bins spamming from 20 to 320 nucleotides of length. The

Fig. 3. Fitting of the µ and σ values as a function of the shorter of the two
RNA aligned structures (N). The score distribution was obtained from 44 850
pairwise alignments calculated using the RAND set of RNA structures.

Table 3. Statistical significance of a SARA alignment score

−ln(P) threshold False positives False negatives
PSI � 25% PSI � 75%

5.0 91 (1.6%) 2797 (8.6%)
4.0 135 (1.5%) 1067 (3.7%)
3.0 251 (1.8%) 141 (0.5%)

frequency of the resulting PSI values in each bin was fitted to an
extreme value distribution. Finally, a power law function was used
for the analytic estimation of µ and σ as a function of N (Fig. 3).
The µ and σ parameters were then used to calculate the z-score (z)
and the P-value (P(x > z)), which estimates the probability to obtain
by chance an alignment of a score x larger than z [Equations (5)
and (6)].

The ability of the P-value for selecting statistically significant
alignments was tested using the alignments from an all-against-all
comparison of the NR95 set. The relationship between N , the minus
logarithm of the P-value (−ln(P)) and PSI allows us to determine
a significance threshold for the selection of accurate alignments
(Table 3 and Fig. 4). Setting a conservative threshold of 5.0 −ln(P),
the percentage of false positive alignments [i.e. alignments with
−ln(P) � 5.0 and PSI � 25%] is 1.6 and the percentage of false
negatives [i.e. alignments with −ln(P) < 5.0 and PSI � 75%] is 8.6.
Similar results were obtained for alignments using the secondary
structure information.

In summary, for typical RNA structures (i.e. N < 50), a −ln(P)
value higher than 5 would most of the time result in an alignment of
more than 25 nucleotides within 4.0 Å. Therefore, the results show
that the background distribution obtained by comparing randomly
generated RNA structures can be used for estimating a score, which
correlates with the significance of the alignment at the same time
that it is independent of N .
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Fig. 4. −ln(P) scores for the 36 226 pairwise alignments from the all-
against-all comparison in the NR95 set are plotted as function of the shorter
of the two RNA aligned structures (N). The pie charts, which volumes are
proportional to the number of alignments, show the percentage distribution
of alignments depending on PSI.

3.3 Alignment accuracy
The alignments produced by SARA were benchmarked for their
accuracy compared to the ARTS program and for their use in
automatic classification of RNA structures in the SCOR database.
The benchmark against the ARTS program was performed using
1275 pairwise alignments from the NR95-HR set. At the time of
the benchmark only two similar programs to SARA were available
as web servers (Dror et al., 2006; Ferre et al., 2007) and only
ARTS was published and available as a stand-alone program (Dror
et al., 2005). The benchmark for automatic assignment of RNA
function was performed using 1770 pairwise alignments from the
NR95-SCOR set. Although not updated since 2004, only one stable
classification of RNA structures was available at the time of the
benchmark (Tamura et al., 2004).

To fairly compare the alignments produced by SARA and ARTS,
all the structures in the benchmark set contained at least two base
pairs. To obtain an alignment by ARTS, 16 of the 51 chains in the
NR95-HR set had to be complemented by co-crystallized chains to
which they were base pairing. Those co-crystallized chains were
considered as a single chain for the benchmark exercise. Moreover,
both the resulting superposed coordinates by SARA and ARTS
were then used to calculate the PSI, and the PSS accuracy scores
[Equations (1) and (2)]. It is important to note that, in average, when
SARA uses secondary structure information the number of pairwise
alignments with at least 50% PSI and PSS increases ∼13% for the
NR95-HR set with respect to SARA not using such information.

SARA and ARTS cannot be statistically distinguished for their
accuracy in aligning nucleotides of two RNA structures. However,
in average, SARA tends to superpose ∼0.2 more nucleotides
than ARTS for the whole set of alignments in the NR95-HR set.
Moreover, SARA results in more superposed base pairs than ARTS.
In particular, SARA has ∼12% more alignments that result in
at least 50% PSS than ARTS. Such difference is significant as
assessed by the parametric Student’s t-test at the 95% confidence
value (Marti-Renom et al., 2002). Therefore, SARA results in ∼6%
more alignments with both PSI and PSS at least 50% compared to
ARTS (i.e. 37 and 31% of the alignments, respectively) (Fig. 5). By
selecting only alignment pairs with at least 50% PSI and PSS in any
of the two methods (i.e. 593 pairwise alignments), the differences

Fig. 5. ARTS and SARA comparison. The percentage of alignments for the
all-against-all comparison of the chains in the NR95-HR set is plotted as a
function of the minimal percentage of PSI and PSS.

Fig. 6. ARTS and SARA comparison. Structural alignment of a sarcin/ricin
domain 28S rRNA (PDB code 1q96 chain A) with a 5S Ribosomal RNA
(PDB code 1un6 chain E). The PSI, PSS and RMSD scores were calculated
from the superposed coordinates using a local implementation of the ProSup
algorithm (see Section 2).

between SARA and ARTS become significant at the 95% confidence
value for both the PSI and PSS scores.

The present results quantify the increase in accuracy of RNA
structure alignment compared to existing methods such as ARTS.
Although such differences in accuracy may seem small, our
benchmark indicates that in average the observed differences are
statistically significant at the 95% confidence level. For example, the
structural alignment of a sarcin/ricin domain 28S rRNA (PDB code
1q96 chain A) with a 5S Ribosomal RNA (PDB code 1un6 chain E)
results in 50% more base pairs and 15.7% more nucleotides aligned
by SARA compared to the ARTS alignment (Fig. 6). The difference
in such alignment are due to a more accurate superposition of a loop
region at the tip of the hairpin, which results in a slightly increase
of the RMSD from 1.66 Å to 1.78 Å.

Predicting the function of newly discovered molecules is a very
challenging task for modern computational biology. Such task is
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A

B

Fig. 7. Automatic assignment of RNA function by SARA. The percentages
of correctly assigned SCOR classification (Top 1 and Top 5) as well as the
coverage of the NR-SCOR database are plotted as a function of the −ln(P)
alignment score. (A) Percentage of correctly assigned deepest SCOR class.
(B) Percentage of correctly assigned parents in the direct acyclic graph of
the SCOR classification.

usually facilitated when the molecular 3D conformation is known.
For proteins, Structural Genomics initiatives are in need for faster
and more accurate protein structure alignment methods to facilitate
their function annotation (Friedberg, 2006; Godzik et al., 2007).
Therefore, one of the most appealing tasks for structure alignment
methods is to produce sufficiently accurate alignments that would
probe useful for transferring molecular function. The alignments
produced by SARA were benchmarked for their accuracy for
inferring RNA function from annotated structures in the SCOR
database. The NR95-SCOR set with 60 chains and 1770 pairwise
alignments was used to assess how many times SARA was able to
identify as a top hit [i.e. with the highest −ln(P)] and within the Top
5 hits a structure with the same SCOR classification as the query
structure. For pairs of alignments with -ln(P) higher than 7, SARA
was able to identify as top hit an identical classification for 61%
of the query structure (Fig. 7A). Such accuracy increases to 70% if
we allow a correct hit within the Top 5 alignments. Considering as
correct a hit that has a common parent in the SCOR classification,
SARA resulted in an accuracy of 72 and 91% for Top 1 and Top 5
hits, respectively (Fig. 7B).

4 DISCUSSION
The accelerating pace of RNA structures deposition is making RNA
structure alignment methods a necessary tool for leveraging the

wealth of data in the PDB. Despite such need, only two RNA
structure alignment programs of general applicability have been
published to date (Dror et al., 2005, 2006; Ferre et al., 2007).
The DIAL and ARTS programs usually result in accurate structure
alignments between related RNAstructures or motifs. However, both
programs have certain limitations, which we have tried to address
by developing and implementing a new RNA structure alignment
algorithm based on a unit-vector approach. The SARA program,
introduced in this work, differentiates from the DIAL and ARTS
programs in several aspects: (i) the unit-vector approach is of general
applicability being possible to obtain a structure alignment even for
structures with only a phosphate-trace, with no base pairs or with
missing atoms; (ii) compared to DIAL, SARAreports the score of the
final alignment as well as its statistical significance within seconds
of computational time, which can be used to assess its relevance
and (iii) the algorithm implemented in SARA is different to those
in DIAL and ARTS making it an alternative choice for aligning two
structures of remote similarity when different methods may result in
very different pairwise alignments. Moreover, in this work we have
also introduced a series of RNA structure sets, which constitute the
first stable benchmark set for future development of RNA structure
alignment methods. In particular, the RAND set of alignments may
prove useful for generating random distributions of RNA structure
alignment scores necessary for assessing the statistical significance
of pairwise alignments.

SARA takes as input the structures of two RNA molecules and
calculates their global alignment within seconds of submission (e.g.
<10 s for two RNA structures of ∼100 nucleotides). Moreover,
SARA calculates a P-value to assess the statistical significance of an
alignment score. The negative logarithm of the P-value has proven
useful for selecting relevant structure alignment from a set of poorly
significant ones. Pairwise structure alignments with a −ln(P) higher
than 3.0 could be considered non-random with a ∼95% confidence
threshold (i.e. ∼0.05 P-value). In average, alignments with −ln(P)
higher than 3.0 have at least 16 superposed nucleotides within 4.0
Å. However, biologically relevant alignments may only be detected
with −ln(P) threshold higher than 5.0. Similar to proteins, there is
a decrease of structure identity as the sequence identity between
two pairs of RNA molecules decreases. However, about 2% of the
pairwise alignments from the NR95 dataset result in percentage of
sequence identity <25% and percentage of structural identity >90%.
Such alignments have a high percentage of conserved base-pairing
(∼85%) indicating that even in very low sequence identity, the
secondary structure of RNA is very well conserved. At the threshold
of −ln(P) of 5.0, SARA is able to correctly identify SCOR parents
for about ∼85% of the NR95-SCOR set with accuracy of ∼70% and
a ∼0.02 probability of false positive detection. Of the 60 chains in
the NR95-SCOR set, SARA correctly recognized 27 RNA chains
with the same deepest SCOR classification and 38 RNA chains
with at least one father in common. The accuracy of SARA was
also benchmarked against the ARTS program for its ability for
producing pairwise RNA structure alignments with high PSI and
PSS. SARA results in ∼6% extra pairwise alignments than ARTS
with PSI and PSS higher than 50%. Moreover, in average, SARA
results in ∼0.2 more nucleotides and ∼0.4 base pairs superposed
for the whole NR95-HR set, which includes non-relevant pairs of
alignments. Selecting only those pairwise alignments with PSI and
PSS higher than 50% resulted in small but statistically significant
differences between SARA and ARTS.
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In summary, we have introduced a new algorithm for RNA
pairwise structure alignment, which has been implemented in
the SARA program. The algorithm was developed for general
applicability even when incomplete RNA structures are available.
Moreover, a new series of RNA structure and alignment sets have
been introduced, which will allow further development of new
and existing methods for RNA structure alignment. Despite the
accuracy of SARA pairwise alignments and function assignments,
the alignment of two molecular structures is always a difficult
problem, which usually results in different answers depending
on the method used. Therefore, SARA could be considered as a
complementary method to those already developed such as DIAL
and ARTS.
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