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High-throughput genotyping and sequencing techniques are rapidly and inexpensively providing large
amounts of human genetic variation data. Single Nucleotide Polymorphisms (SNPs) are an important source
of human genome variability and have been implicated in several human diseases, including cancer. Amino
acid mutations resulting from non-synonymous SNPs in coding regions may generate protein functional
changes that affect cell proliferation. In this study, we developed a machine learning approach to predict
cancer-causing missense variants. We present a Support Vector Machine (SVM) classifier trained on a set of
3163 cancer-causing variants and an equal number of neutral polymorphisms. The method achieve 93%
overall accuracy, a correlation coefficient of 0.86, and area under ROC curve of 0.98. When compared with
other previously developed algorithms such as SIFT and CHASM our method results in higher prediction
accuracy and correlation coefficient in identifying cancer-causing variants.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Single Nucleotide Polymorphisms (SNPs) are a specific class of
genomic variation responsible for about 90% of human variability [1].
In particular the SNPs occurring in coding regions may have higher
impact affecting the function of the transcribed proteins [2]. More
efficient sequencing and genotyping techniques are detecting a large
amount of human genetic variation data [3]. Different international
consortiums are collecting information about variations in human
genome. The HapMap consortium [4] is characterizing common
variation and linkage disequilibrium patterns that can be related to
common diseases [5,6]. The Human Variation Project [5] has been
funded to collect, curate, and make accessible information on genetic
variations affecting human health. International institutions are
collaborating in the 1000 Genomes Project (http://www.
1000genomes.org/) to produce the most complete catalog of genetic
variations in human population [7]. In 2005, the Wellcome Trust Case
Control Consortium (WTCCC) has been established to understand the
relationship between human genome sequence variation and disease.
Using high-throughput technologies, WTCCC collaborators have
genotyped about 14,000 patients for seven common diseases
performing one of the largest Genome-Wide Association Study
(GWAS) [8]. This effort results in an increasing number of SNPs data
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stored in databases available online. Currently, the dbSNP database at
the NCBI [9] collects about 20 million of validated human SNPs. The
manually curated SwissVar database [10] reports the possible
pathologic effect of about 61,000 missense SNPs and the public
version of the HGMD database [11] includes more than 74,000
mutations causing or associated with human inherited disease, plus
disease-associated/functional polymorphisms. It is evident that there
is a need of computational methods to analyze and identify
functionally important variants and describe their molecular effects.
During the last decade several bioinformatics methods has been
developed to predict the effect of a particular class of SNPs resulting in
Single Amino acids Polymorphisms (SAPs) [12-14]. In general,
computational methods for the prediction of the impact of SAPs use
empirical rules [15,16], Hidden Markov Models [17], Neural Networks
[18,19], Decision Tree [20,21], Random Forest [22-26] and Support
Vector Machines [27-31], algorithms relying on amino acid sequence,
structure and evolutionary information. The amino acid sequence
provides information about the physico-chemical properties of the
mutated residues such as hydrophobicity, charge, polarity, bulkiness
etc. Structural information describes the structural environment of
the mutation and has been successfully used to predict the protein
stability change upon mutation [32,33]. The most important source of
information for the characterization of the effect of SAPs is the
evolutionary information. The main hypothesis presumes that
important amino acids will be conserved in the protein family, and
so changes at well-conserved positions tend to be predicted as
deleterious. Recently, a second generation of algorithms that includes
also knowledge-based information [24,25,28] has shown better
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performances with respect to older predictors. The first developed
methods SIFT [15] and PolyPhen [16] use different representation of
evolutionary information. For each mutated site, SIFT scores the
normalized probabilities for all possible substitutions using a multiple
sequence alignment between homolog proteins and PolyPhen
evaluates the impact of SAPs calculating different sequence-based
features and a Position Specific Independent Counts (PSIC) matrix
from a multiple sequence alignment. Protein family HMM models
implemented in PANTHER [34] have been used to predict deleterious
mutations and recently, protein three-dimensional structure features
have been shown to improve the performance of SAPs prediction
algorithms [22,27,31]. Machine learning-based methods such as PhD-
SNP [30] and SNAP [18] have shown better results with respect to
traditional methods. The new class of predictors relying on knowl-
edge-based information results in overall accuracy higher than 80%.
SNPs&GO [28] includes a new function annotation score calculated
using GO terms and MutPred [25] evaluates the impact of a given
variant considering the output of several machine learning ap-
proaches. A selected list of web available tools for the detection of
deleterious missense variants is reported in Supplementary Table 1.

Although available methods are producing valuable results in the
detection of disease-related mutations they do not provide any
information about the associated pathology. Only MutPred [25] is the
first attempt of algorithm able to provide information about the
disease mechanism.

To address this problem, we propose a new class of disease-
specific predictors trained on a subset of SAPs related to specific
disease classes. One of the highest causes of mortality and morbidity
in the developed countries is cancer. Although several advances have
been made in cancer therapy [35,36], the disease mechanism is still
largely unclear. Unlike Mendelian disease where the pathology is
principally related to one gene, cancer is a complex disease that often
involves several genes. Although it is difficult to dissect the
contribution of each gene, individual variants could be indicators of
disease risk [37]. To address this problem, two machine learning-
based methods have been proposed to predict cancer-causing
mutation [23,24]. CanPredict [38] combines SIFT output, a PFAM
[39] and a functional-based scores [38] to predict cancer-causing
mutations and CHASM [23] takes in input several sequence and profile
features to discriminate between passenger and driver variants. These
methods are addressing two different aspects of the problem:
CanPredict discriminates deleterious mutations occurring in cancer
genes from neutral variants from dbSNP database and CHASM detects
driver SAPs in cancer-related proteins. To reduce possible over-
estimation of the performances [40], we tested our method
considering all the driver cancer variants of the same protein either
in training or testing set. Our disease-specific machine learning-based
predictor, which has been extensively tested on a large set of
manually annotated from different sources, results in good level of
accuracy when compared with previously implemented methods.

2. Material and methods
2.1. Terminology

In this work we use as synonymous the words single amino acid
polymorphism (SAP), missense variant and SNP although the term
variant is more general and includes also missense SNP with allele
frequency lower than 0.01. We distinguished three classes of variants:
cancer-causing, neutral polymorphisms and other disease-related
SAPs. We refer to cancer-causing SAPs as the driver variants identified
to play a functional role in oncogenic cell transformation and used to
test and train CHASM algorithm [23]. The missense SNPs without any
evidences of association to disease in SwissVar and recently selected
as negative cases [41] are indicated as neutral variants or poly-
morphisms. We also used Synthetic passengers SAPs generated by

CHASM as neutral polymorphisms. A set of variants associated to
pathologies not related to the MeSH term “neoplasms” are referred as
other disease-related variants. In the binary classification problem
addressed in this paper, all the variants are classified in Disease and
Neutral. The driver cancer variants belong to the class Disease (D).
Passenger, neutral and other disease-related variants, that are not
associated with the insurgence of cancer, are classified as Neutral (N).

2.2. Datasets

The selection of a representative set of variants for the training and
testing of SAPs prediction methods is a key issue. The performances of
the algorithms are strongly dependent on the selected set of neutral
and disease-related polymorphisms [42]. For this study, we collected
SAPs data from different sources. Cancer-causing variants are selected
from breast, colorectal, pancreatic tumor resequencing studies [43-
45] and COSMIC database [46] that are provided with CHASM
package. Neutral variants are from Swiss-Prot database [47] or
generated by CHASM. Other disease-related variants are non “neo-
plasms” disease-related variants annotated in SwissVar database [10].

In particular the neutral polymorphisms and other disease-related
variants from SwissVar have been selected according to a recently
described procedure [41]. We built three main datasets to train and
test the ability of our method to detect cancer-causing variants. The
CNO dataset (Cancer and Neutral missense variants only) with a total
number of 6326 variants is composed by 3163 cancer-causing variants
and an equal number of neutral polymorphisms. The 3163 cancer-
causing mutations from 74 proteins in CNO dataset have been selected
from the set of driver cancer mutation used to train CHASM algorithm
[23]. The 3163 neutral polymorphisms included in the CNO dataset
have been randomly selected from the subset of neutral SAPs in
SwissVar database with allele frequency higher than 0.01 and
chromosome sample count higher than 49 from the dbSNP database
[9] build 131. The performance of our method has been evaluated on
the subsets of the CNO dataset with primary histology annotated in
the COSMIC database as Carcinoma, Hematopoietic Neoplasm,
Lymphoid Neoplasm, Glioma and Malignant Melanoma. The Carcino-
ma, Hematopoietic, Lymphoid, Glioma and Melanoma subsets are
composed respectively by 1899, 461, 441, 384 and 257 driver cancer
variants and an equal number of neutral polymorphisms. To test the
performance of our predictor in the discrimination between cancer
and other disease-causing variants, we build the CND dataset (Cancer,
Neutral and other Disease-related missense variants) substituting 50%
of neutral polymorphisms with same number of randomly selected
from disease-related variants in SwissVar not associated to the MeSH
term “neoplasms”.

We have also tested our method in the discrimination between
driver and passenger cancer variants building the Synthetic dataset
composed by the 3163 driver mutations included in the previous two
datasets and an equal number of passenger variants generated by
CHASM algorithm. The composition of the three datasets and subsets
used in this work is summarized in Table 1.

2.3. Implemented SVM-based predictors

The proposed task is to predict whether a given missense variant is
a neutral or involved in the insurgence of cancer. The task is treated as
a binary classification problem for the protein variants. The Support
Vector Machine (SVM) classifies SAPs in cancer-causing (desired
output set to 0) and neutral polymorphism (desired output set to 1).
The SVM output is a number between 0 and 1 and the decision
threshold has been set to 0.5. The input features of our algorithm
(SPF-Cancer) include: the amino acid mutation, its local sequence
environment, sequence-profile derived features, the output of
PANTHER algorithm [34] and a cancer-specific functional-based log-
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Table 1
Datasets composition.

Dataset Drivers Passengers Neutral Other disease Total
CNO 3163 - 3163 - 6326
Carcinoma 1899 - 1899 - 3798
Hematopoietic 461 - 461 - 922
Lymphoid 441 - 441 - 882
Glioma 384 - 384 - 768
Melanoma 257 - 257 - 514
CND 3163 - 1581 1582 6326
Synthetic 3163 3163 - - 6326

The CNO, CND and Synthetic datasets are composed by the same set of driver cancer
variants and respectively only neutral polymorphisms (CNO), neutral and other
disease-related variants (CND) and passenger cancer variants generated by CHASM
algorithm (Synthetic). Carcinoma, Hematopoietic, Lymphoid, Glioma and Melanoma
are subsets of CNO composed by driver cancer variant with primary histology
description annotated in COSMIC database.

odd score calculated considering the GO slim ontology. The final input
vector consists of 51 values:

* 40 components encoding for the mutation and the local sequence
environment (Seq).

* 5 inputs features derived from sequence profile (Prof)

* 4 elements vector from the PANTHER output

* 2 elements encoding for the number of GO slim terms associated to
the protein sequence and the GO slim log-odd score (LGO).

Two other predictors have been developed considering subset of
features: mutation site specific method (SeqProf) with input features
composed by the 45 elements vector corresponding to Seq and Prof
data and protein specific method (F-Cancer) with 2 elements vector
features encoding for the cancer-specific functional score (LGO). A
third predictor (SPF-All) has been developed calculating a generic
functional log-odd score on the whole set of SwissVar SAPs including
all type of diseases.

2.4. Encoding sequence information

The input vector portion relative to sequence information consists
of 40 values: the first 20 (the 20 residue types) explicitly define the
mutation by setting to — 1 the element corresponding to the wild type
residue and to 1 the newly introduced residue (all the remaining
elements are kept equal to 0). The last 20 input values encode for the
mutation sequence environment (again the 20 elements represent
the 20 residue types). Each input is provided as the number of the
encoded residue type, to be found inside a window centered at
the residue that undergoes mutation and that symmetrically spans
the sequence to the left (N-terminus) and to the right (C-terminus)
with a length of 19 residues [30].

2.5. Encoding profile information

We derive for each mutation: the frequency of the wild type, the
frequency of the mutated residue, the number of totally and locally
aligned sequences and a Conservation Index (CI) [48] for the position
at hand: the more a residue is functionally important the more is
conserved over evolution. The Conservation Index is calculated as:

271/2

qli) = [3,- () —f,) (1)

where f,(i) is the relative frequency of residue a at mutated position i
and f; is the overall frequency of the same residue in all the alighmed
positions. The sequence profile is computed from the output of the
BLAST program [49], running on the uniref90 database (release 13.3
April 2008) (E-value threshold =102, number of runs=1).

2.6. PANTHER features

The 4 elements vector from PANTHER [32] output is composed by
the probability of deleterious mutation, the frequencies of the wild-
type and new residues in the PANTHER family alignment and the
number of independent counts. In case that PANTHER does not return
any output the probability of deleterious mutation is set to 0.5 and the
remaining value has been set to 0.

2.7. Computing the LGO score

The Gene Ontology log-odds score (LGO) is computed to derive
information related to the correlation among a given SAPs effect
(cancer-causing and neutral) and the protein function. The annotation
data are relative to the Gene Ontology [50] Database version 1.37 and
are retrieved at the web resource hosted at the European Bioinfor-
matics Institute (EBI). The version of gene ontology classification we
used (Dec 2009) contains 30,304 Gene Ontology (GO) terms. To
reduce the number of terms and have more general functional terms
we consider the GO slim annotation. The GO slim is a simplified
version of the GO ontology containing a subset of the terms in the
whole GO. They give a broad overview of the ontology content
without the detail of the specific terms. In this work we used the
generic GO slim ontology (release Sep. 2009) that consists of 132
different GO terms. The generic GO slim file has been downloaded
from the Gene Ontology web site (http://www.geneontology.org/
GO_slims/goslim_generic.obo). To calculate the LGO, first we derived
the GO terms (from all the three branches: molecular function,
biological process and cellular components, when available) for all our
proteins in the dataset (CNO). For each annotated term the
appropriate ontology tree was used to retrieve all the parent terms
with the GO-TermFinder-0.8 tool (http://search.cpan.org/dist/GO-
TermFinder/) [51] and counting a GO term only once. When all the GO
terms for each protein have been collected, we mapped them on the
generic GO slim terms using the map2slim.pl script downloaded from
the Gene Ontology web site. The LGO is finally calculated as the log-
odds score associated to each protein:

LGO = 3log,|fco(D) / foo(N)] 2)

where fgo is the frequency of occurrence of a given GO slim term for
the cancer-causing (D) and neutral mutations (N) adding one pseudo-
count to each class. The LGO scores are evaluated considering fgo
values computed over the training sets without including in the GO
slim term counts of the corresponding test set. This strategy avoids
overfitting in the cross-validation procedure.

2.8. Support Vector Machine software

The LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
has been used for the SVM implementation [52]. The selected SVM
kernel is a Radial Basis Function (RBF) kernel K(x;X;) = exp(—y||xi —
xj||?) and ~y and C parameters are optimized performing a grid like
search. After input rescaling the values of t
he best parameters are C=8 and y=10.03125.

2.9. Scoring the performance

The results obtained with our SVM methods are evaluated using a
cross-validation procedure on the CNO dataset. The reported data for
the classification task performed by the SVM methods are obtained
adopting a 20-fold cross-validation procedure in such a way that the
ratio of the disease-related to the neutral polymorphism mutations is
similar to the original distribution of the whole set. Furthermore, all
the proteins in the CNO datasets are clustered according to their
sequence similarity with the blastclust program in the BLAST suite [49]
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by adopting the default value of length coverage equal to 0.9 and the
percentage similarity threshold equal to 30%. We kept the mutations
detected on the same protein cluster s in the same training set to
prevent an overestimation of the results. In the comparison with
CHASM and SIFT, the methods are tested using a similar strategy used
in the CHASM paper [23]. The whole Synthetic dataset is divided in
two similar subsets composed same number of drivers and passenger
cancer variants. The accuracy measures are calculated using a 2-fold
cross validation procedure. In this paper, the efficiency of the
predictors is scored using the following statistical indexes.
The overall accuracy is:

Q2=CP/T (3)

where CP is the total number of correctly predicted mutations and T is
the total number of mutations.
The Matthews correlation coefficient C is defined as:

C(s) = [p(s)n(s)—u(s)o(s)] / D (4)

where D is the normalization factor:

D = [(p(s) + u(s))(p(s) + 0(s))(n(s) + u(s))(n(s) + o(s)]'/*  (5)

for each class s (D and N, stand for cancer-causing and neutral
polymorphism, respectively); p(s) and n(s) are the total number of
correct predictions and correctly rejected assignments, respectively,
and u(s) and o(s) are the numbers of false negative and false positive
for the class s.

The coverage S (sensitivity) for each discriminated class s is
evaluated as:

S(s) = p(s)/ [p(s) + u(s)] (6)

where p(s) and u(s) are the same as in Eq. (5).
The probability of correct predictions P (or positive predictive
values) is computed as:

P(s) = p(s)/ [p(s) + o(s)] 7)

where p(s) and o(s) are the same as in Eq. (5) (ranging from O to 1).
Finally, it is very important to assign a reliability score to each
prediction. For each output O(D), this is obtained by computing:

RI = 20*|0(D)—0.5] 8)

Other standard scoring measures, such as the area under the ROC
curve (AUC) and the true positive rate (TPR=0Q(s)) at 10% of False
Positive Rate (FPR=1-P(s)) are also computed [53].

3. Results
3.1. Method accuracy

We evaluated our method for predicting cancer-causing missense
variants (SPF-Cancer) using a 20-fold cross-validation procedure on
the CNO dataset. The SPF-Cancer predictor reaches 93% of overall
accuracy, 0.86 correlation coefficient and area under the ROC curve
0.98 (see Table 2). When 10% of false positive are accepted the true
positive rate is 0.94 (see Fig. 1 panel A). If predictions with reliability
index (RI) higher than 4 are selected, the method results in ~96%
accuracy and 0.92 correlation coefficient on 91% of the datasets (see
Fig. 1 panel D). We also evaluated the accuracy of our algorithm on the
subsets of variants associated to different histology description in
COSMIC database. In comparison with the results on CNO dataset, our
predictor shows similar performances on the Carcinoma, Lymphoid
and Glioma subsets. Contrarily, SPF-Cancer results in 2% higher
accuracy and 0.04 higher correlation coefficient on the Melanoma

Table 2

Performances of the method.
Dataset Q2 P[D] S[D] P[N] S[N] C AUC
CNO 0.93 0.93 0.93 0.93 0.93 0.86 0.98
Carcinoma 0.93 0.93 0.94 0.94 0.93 0.87 0.98
Hematopoietic 0.90 0.93 0.87 0.88 0.93 0.80 0.96
Lymphoid 0.93 0.93 0.92 0.92 0.93 0.85 0.98
Glioma 0.94 0.93 0.96 0.96 0.93 0.89 0.99
Melanoma 0.95 0.93 0.98 0.98 0.93 0.90 0.99
CND 0.90 0.87 0.93 0.92 0.86 0.79 0.95

Overall accuracy (Q2), positive predictive value (P) Sensitivity, Correlation coefficient
(C) and area under the ROC curve (AUC) are defined in methods section. D (Disease)
and N (Neutral) are respectively cancer-causing and neutral variants in CNO dataset. In
CND dataset N (Neutral) variants are both neutral and other disease-related.

subset and 3% lower accuracy and 0.06 lower correlation coefficient on
the Hematopoietic subset with respect to CNO dataset (see Table 2).

The ability of SPF-Cancer in the classification of cancer-causing
missense variants, has been tested using the CND dataset that includes
25% of variants from other diseases. In Table 2, we show that the
accuracy and the AUC of SPF-Cancer on CND dataset are only 3% lower
with respect to those on the CND dataset.

3.2. Using of filters to improve the performance

To score the improvement of accuracy resulting from the combina-
tion of protein sequence, evolutionary and functional information, the
SPF-Cancer method has been compared with simpler SVM-based
approaches including either protein sequence and profile information
(SeqProf) or only functional information (F-Cancer). On CNO dataset
SeqProf and F-Cancer methods result in 64% and 92% overall accuracies
and 0.28 and 0.85 correlation coefficients respectively (see Table 3).
Thus, SFP-Cancer that includes all the input features results in 1% more
accurate predictions and 0.02 higher correlation coefficient with respect
to F-Cancer. More interestingly, the SeqProf and F-Cancer results can be
used as a filter to select high reliable predictions. In ~62% of the variants
in CNO dataset, for which the predictions of SeqProf and F-Cancer
methods agree (Consensus), the overall accuracy of SPF-Cancer reaches
96% of accuracy, 0.92 correlation coefficient and 0.99 AUC (see Fig. 1
panel E). On the remaining subset of variants (~38%) where the
predictors disagree (notConsensus), SPF-Cancer results only in 88%
overall accuracy and 0.76 correlation coefficient (see Fig. 1 panel F). To
explain the different level of accuracy between Consensus
and notConsensus subset we plot the distributions of the CI values
for cancer-causing and neutral variant (see Fig. 2 panel A) and
calculated distances (d) between the cumulative distribution for the
Kolmogorov-Smirnov (KS) test. The resulting distances are 0.21, 0.44
and —0.22 for the CNO, Consensus and notConsensus datasets
respectively. We observed similar trend plotting the distributions of
the LGO-scores (see Fig. 2 panel B). In this case, the distances associated
to the KS test are 0.87,0.92 and 0.78 respectively. In Table 4 we reported
the summary of the comparison between the CI and LGO distributions.

3.3. Comparison with other predictors

We compared the performance of SPF-Cancer with those obtained
by SIFT, CHASM and a similar SVM-based predictor with generic GO
slim-based score (SPF-All) calculated using whole set of disease-related
variants (see Table 5). On the Synthetic dataset, SIFT and CHASM result
in 68% and 80% overall accuracies and 0.22 and 0.60 correlation
coefficients respectively. Thus, SPF-Cancer shows more than 10% higher
accuracy and correlation coefficient with respect to CHASM. SPF-Cancer
also results in 2% higher overall accuracy and 0.06 higher correlation
coefficient when compared with SPF-All. To estimate the significance of
the differences between the four predictors, we calculated the x?
obtained comparing the confusion matrix SPF-Cancer with those of
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Fig. 1. Performance of SPF-Cancer method. ROC curve of SPF-Cancer method on CNO and CND (panel A) on CNO dataset and Consensus and Not Consensus subsets (panel B).In panels
C, ROC curves of SIFT, CHASM, SPF-All and SPF-Cancer on the Synthetic dataset. Plot of the accuracy (Q2), correlation coefficient (C) and percentage of the dataset (DB) as a function
of the reliability index (RI) for SPF-Cancer method on CNO dataset (panel D) and Consensus (panel E) and Not Consensus subsets (panel F).

SPF-All, CHASM and SIFT. The associated probabilities to observe this
differences by chance are 3.4x 1075, 8.6x 10~ 82 and 0 respectively for
SPF-All, CHASM and SIFT.

3.4. GO score analysis

The GO score used in this work, has been calculated using GO slim
terms. To better understand the ability of the method to correctly
classify cancer-causing mutations score, we compare the values of
cancer-specific and generic LGO scores. In particular the comparison
between the LGO values calculated on the dataset driver cancer
variants and on the dataset including all disease-related variants has
been used to detect GO terms associated to cancer. Although the LGO
scores are dependent on the training set, their relative values obtained

Table 3

Selecting more accurate predictions.
Method Q2 P[D]  S[D] P[N] SIN] C AUC PM
SeqProf 064 066 058 063 070 028 0.70 100
F-Cancer 092 092 093 093 092 085 097 100
SPF-Cancer 093 093 093 093 093 086 098 100
Consensus 096 096 095 096 097 092 099 62
NotConsensus ~ 0.88 090 090 0.87 087 076 095 38

Overall accuracy (Q2), positive predictive value (P) Sensitivity, Correlation coefficient
(C) and area under the ROC curve (AUC) are defined in Methods section. D (Disease)
and N (Neutral) are referred to cancer-causing and neutral variants. PM is the
percentage predicted variants of CNO dataset.

in comparison with generic LGO scores provide an estimation of the
GO terms' occurrences. Thus, a positive difference between the
cancer-specific and generic LGO scores indicates an enrichment of the
relative GO terms in the cancer specific dataset while negative
difference corresponds to GO terms more abundant in the dataset
including all disease-related variants. In Fig. 3 the scatter plot of the
generic LGO score versus the cancer-specific LGO score for each GO
slim term. The interesting GO functions are those corresponding to
the points far from the diagonal. The points with negative generic
LGOs and positive cancer-specific LGOs are those with GO slim
functions related to cancer. The points with cancer-specific LGOs close
to zero and higher generic LGOs are those with GO slim functions
generally associated to the all the pathologies in SwissVar dataset. For
example, in our study we observed that Growth (G0O:0040007) and
Kinase Activity (GO:0016301) GO slim terms have stronger associa-
tion to cancer showing respectively cancer-specific LGOs 4.02 and
3.30 and generic LGOs 2.63 and 1.78. Other interesting GO slim terms
associated to all the diseases are the Transporter Activity
(G0O:0005215) and Oxygen Binding (G0:0019825) which have
respectively cancer LGOs —7.77 and —4.09 and generic LGOs 1.20
and 2.99. There are also GO slim terms that have similar values for
cancer and generic diseases LGO scores. Two examples are the
Carbohydrate Metabolic Process (G0:0005975) that has similarly
related cancer and all the diseases in our dataset resulting in LGO
scores respectively 2.55 and 2.23, and the Calcium Ilon Binding
(GO:0005509) that is not related to cancer and slightly associated to
all the diseases showing LGO scores —0.01 and 0.56 respectively.
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Fig. 2. Distributions of the Conservation Index and LGO on CNO dataset. Boxplot of the distributions for the Conservation Index (Panel A) and LGO scores (panel B) on CNO and
Consensus and NotConsensus subset respectively for cancer-causing (Disease) and neutral variants (Neutral).

4. Discussion

In general cancer-specific prediction methods have been trained
either to discriminate between passenger and driver cancer-causing
SAPs in a known cancer-related protein or to detect cancer-causing
using a negative set of neutral SAPs in proteins with different functions.
SPF-Cancer method has been tested on both tasks. We built the CNO
dataset selecting all the cancer-causing variants used to train and test
CHASM method and an equal number of randomly selected neutral
polymorphism from a curated set of variants recently used to test the
performances of predictive algorithms [41]. The results obtained on this
dataset should be considered as upper bound performances since we
selected only neutral variants with allele frequencies higher than 0.01
for which their annotation is expected to be more accurate. To compare
our methods against previously developed algorithms we use the

Synthetic dataset for which neutral missense variants are generated by
CHASM algorithm.

The SPF-Cancer predictor tested in cross-validation on CNO
dataset, resulting in 93% overall accuracy and 0.86 correlation
coefficient. With respect to the whole CNO dataset, our algorithm
shows better performance in the detection of variants annotated as
Malignant Melanoma and lower performances on Hematopoietic
Neoplasm variants. When compared against CHASM on the Synthetic
dataset, SPF-Cancer shows about 10% better accuracy and 0.2 better
correlation coefficient. The development of cancer-specific predictor
is justified by the improvement of 2% in overall accuracy and 0.06 in
correlation coefficient resulting from the cancer-specific LGO scores.
Differences between cancer-specific and generic predictors are higher
when other disease-related variants are included in the dataset (data
not shown). Although SPF-Cancer shows 3% lower accuracy on the

Table 5
Table 4 Comparison with other methods.
Comparison of the distribution of Conservation Index and LGO score. Dataset Q2 P[D] S[D] P[N] S[N] C AUC PM
Dataset Conservation Index (CI) LGO score SIFT 0.61 0.62 0.66 0.60 0.56 0.22 0.64 95
CHASM 0.80 0.85 0.73 0.76 0.87 0.60 0.88 100
MID] MIN] d pvalue  MID] MIN] d  p-value SPF-All 088 088 087 087 088 075 094 100
CNO 61.0 478 0.21 25%x107% 562 90 087 0 SPF-Cancer 0.90 091 0.90 0.90 0.91 0.81 0.96 100
Consensus 710 421 044 0 629 88 092 0 " . o R .
Not Consensus 488 631 —022 94x10-2° 476 101 078 0 Overall accuracy (Q2), positive predictive value (P) Sensitivity, Correlation coefficient (C)

M[D] and M[N] are the median values for cancer-causing (D) and neutral (N) variants
respectively. d is the distance between the cumulative distributions of cancer-causing
and neutral variants. P-value is associated to Kolmogorov-Smirnov test.

and area under the ROC curve (AUC) are defined in Methods section. D (Disease) and N
(Neutral) are respectively driver and passenger cancer variants. The latter have been
generated by CHASM. PM is the percentage predicted variants for the Synthetic dataset.
The confidence interval for Q2, C and AUC calculated on the two subsets is <0.01.
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related to the value of LGO[Cancer]- LGO[ALL]. In panel B, zoom of the plot in the region of LGO scores between —5 and 5.

Synthetic dataset with respect to CNO dataset, this difference can be
due to the unknown annotation of the passenger variants generated
by CHASM.

SPF-Cancer is also able to discriminate between cancer-causing
variant and other disease-related mutations, while reaching 90% of
accuracy on the CND dataset where 50% of the neutral polymorphisms
are replaced with variants related to non “neoplasm” diseases. The
improvement of the performances resulting from the combination of
site-dependent sequence and profile features and functional infor-
mation can be quantified in 1% higher accuracy and 0.02 higher
correlation coefficient with respect to the GO score-based method. In
addition, using two different methods it is possible to select a subset
of highly accurate predictions. In 62% of the mutations where the
sequence and profile-based (SeqProf) and GO score-based (F-Cancer)
predictions agree, SPF-Cancer results in 3% better accuracy and 0.06
better correlation with respect to the performance on the whole CNO
dataset. On the subset of variants where predictions are in
disagreement (NotConsensus) the low performances are justified by
the reverse trend in the distributions of the Conservation Index for
cancer-causing and neutral variants (d = —0.22). Finally, the com-
parison between cancer-specific and generic LGO score values allows
the estimation of the functional enrichment in cancer-related pro-
teins. For example we observed enrichment of GO terms Growth and
Kinase Activity in cancer-related proteins and Transporter Activity
and Oxygen Binding in the whole set of disease-related proteins.

In conclusion, we present a new machine learning-based algo-
rithm (SPF-Cancer) to predict cancer-causing variants. The SPF-
Cancer method that has been extensively tested on a large set of
variants is a valid alternative to previously developed algorithms.
Considering that cancer is a complex disease that can involve multiple
genes, SPF-Cancer reaches a good level of accuracy also when
compared with previously developed algorithms such as SIFT and
CHASM. The comparison between SPF-Cancer and SPF-All method
indicates that cancer-specific LGO term score improves the prediction
accuracy. The calculation of cancer-specific LGO values allows to rank
with higher scores those proteins annotated with GO term functions
involved in the development of cancer. This suggests new strategies
for the development of the next generation of disease-specific
algorithms able to discriminate between the genetic variants related
to a specific disease and other class of pathologies. Finally, scoring the
deleterious effect of missense variants using sequence profile-based

and functional-based methods allows to select higher confident
predictions where both methods predictions agree. For this subset of
high quality predictions (62%), the SPF-Cancer method results in 96%
overall accuracy and 0.92 correlation coefficient.
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